Elevation of hepatic levels of metallothionein during experimental carcinogenesis

  • Atsushi Takeda
  • Haruna Tamano
  • Akihiko Hoshino
  • Shoji Okada


From the early stage of pancreatic adenocarcinoma in hamsters and also of hepatocellular carcinoma in rats, induced by treatment withN-nitrosobis (2-oxopropyl)amine and 3′-methyl-dimethylaminoazobenzene, respectively, hepatic levels of metallothionein (MT) were found to be continuously elevated. In the hepatoma-induced rats, this elevation preceded that of serum γ-glutamyl transpeptidase activity, a marker enzyme for hepatocellular carcinoma. These results indicate that, in the course of chemical carcinogenesis, the elevation of hepatic MT level occurred and continued from the early stage of carcinogenesis. This type of elevation of hepatic MT level was also observed in lung metastasis-induced mice. On the other hand, in rats with pancreatitis caused by the administration of deoxycholate, the hepatic level of MT rose only transiently.

Index Entries

Metallothionein zinc N-nitrosobis (2-oxopropyl)amine 3′-methyl-dimethylaminoazobenzene lung metastasis carcinogenesis radio-imaging tumor detection 


  1. 1.
    M. Margoshes and B. L. Vallee,J. Am. Chem. Soc. 79, 4813 (1957).CrossRefGoogle Scholar
  2. 2.
    R. J. Cousins,Physiol. Rev. 65, 238 (1985).PubMedGoogle Scholar
  3. 3.
    I. Bremner and J. H. Beattie,Annu. Rev. Nutr. 10, 63 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    E. B. Wright and T. L. Dormandy,Nature 237, 166 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Griffith, E. B. Wright, and T. L. Dormandy,Nature 241, 60 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Takeda, T. Sato, H. Tamano, and S. Okada,Biochem. Biophys. Res. Commun. 189, 645 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Mizumoto, S. Kitazawa, S. Ito, Y. Takashima, M. Tsutsumi, and Y. KonishiPancreas 4, 1 (1989).CrossRefGoogle Scholar
  8. 8.
    R. J. V. Mallie, and J. S. Garvey,Immunochemistry 15, 857 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    J. S. Garvey, R. J. V. Mallie and C. C. Chang,Meth. Enzymol. 84, 121 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    S. H. Oh, J. T. Deagen, P. D. Whanger, and P. H. Weswig,Am. J. Physiol. 234, E282 (1978).PubMedGoogle Scholar
  11. 11.
    J. Hidalgo, M. Giralt, J. S. Garvey, and A. Armario,Am. J. Physiol. 254, E71 (1988).PubMedGoogle Scholar
  12. 12.
    M. Karin and H. R. Herschman,Eur. J. Biochem. 113, 267 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Takeda, T. Sato, and S. Okada,Nucl. Med. Biol. 21, 71 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    M. G. Cherian, P. C. Huang, C. D. Klaassen, Y.-P. Liu, D. G. Longfellow, and M. P. Waalkes,Cancer Res. 53, 922 (1993).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Atsushi Takeda
    • 1
  • Haruna Tamano
    • 1
  • Akihiko Hoshino
    • 1
  • Shoji Okada
    • 1
  1. 1.Department of Radiobiochemistry, School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan

Personalised recommendations