Critical driving force for martensitic transformation fcc(γ)→hcp(ε) in Fe−Mn−Si shape memory alloys

  • Xuejun Jin
  • Zuyao Xu
  • T. Y. Hsu
  • Lin Li


By the application of Chou's new geometry model and the available data from binary Fe−Mn, Fe−Si and Mn−Si systems, as well as SGTE DATA for lattice stability parameters of three elements from Dinsdale, the Gibbs free energy as a function of temperature of the fcc(γ) and hcp(ε) phases in the Fe−Mn−Si system is reevaluated. The relationship between the Neel temperature of the γ phase and concentration of constituents in mole fraction,T N γ =67x Fe+540x Mn+x Fe x Mn[761+689(x Fex Mn)]−850x si, is fitted and verified by the experimental results. The critical driving force for the martensitic transformation fcc(γ)→hcp(ε), ΔG C γ→ε , defined as the free energy difference between γ and ε phases atM s of various alloys can also be obtained with a knownM s . It is found that the driving force varies with the composition of alloys, e. g. ΔG C γ→ε =−100.99 J/mol in Fe−27.0Mn−6.0Si and ΔG C γy→ε =−122.11 J/mol in Fe−26.9Mn−3.37Si. The compositional dependence of critical driving force accorded with the expression formulated by Hsu of the critical driving force for fcc(γ)→hcp(ε) transformation in alloys with low stacking fault energy (SFE), i. e. ΔG C γ→ε =A·γ+B, where γ is the stacking fault energy (SFE) andA andB are constants related to materials.


critical driving force martensitic transformation Fe−Mn−Si alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hsu, T. Y. (Xu Zuyao), On ferrous shape memory alloys (part 1,2,Shanghai Metals (in Chinese), 1993, 15 (2): 1; 15 (3): 1.Google Scholar
  2. 2.
    Forsberg, A., Ågren, J., Thermodynamic evaluation of the Fe−Mn−Si system and the γ/ε,J. Phase Equilibria, 1993, 14: 354.CrossRefGoogle Scholar
  3. 3.
    Chou, K.-C., Wei, S.-K., A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries,Metall. and Mater. Trans., 1997, 28B: 439.CrossRefGoogle Scholar
  4. 4.
    Li, L., Hsu, T. Y. (Xu Zuyao), Gibbs free energy evaluation of the FCC(γ) and HCP(ε) phases in Fe−Mn−Si alloys,CALPHAD, 1997, 21: 443.CrossRefGoogle Scholar
  5. 5.
    Huang, W., An assessment of the Fe−Mn system,CALPHAD, 1989, 13: 243.CrossRefGoogle Scholar
  6. 6.
    Hillert, M., Jarl, M., A model for alloying effects in ferromagnetic metals,CALPHAD, 1978: 227.Google Scholar
  7. 7.
    Inden, G., The role of magnetism in the calculation of phase diagrams,Physica, 1981, 103B: 82.Google Scholar
  8. 8.
    Hsu, T. Y. (Xu Zuyao), Thermodynamic properties of β(γ)→ε martensitic transformation,Acta Metall. Sin., 1980, 16: 430.Google Scholar
  9. 9.
    Dinsdale, A. T., SGTE data for pure elements,CALPHAD, 1991, 15: 317.CrossRefGoogle Scholar
  10. 10.
    Chou, K.-C., Li, W.-C., Li, F.-S. et al., Formalism of new ternary model expressed in terms of binary regular-solution type parameters,CALPHAD, 1996, 20: 395.CrossRefGoogle Scholar
  11. 11.
    Lacaze, J., Sundman, B., An assessment of the Fe−C−Si system,Metall. Trans., 1991, 22(10): 2211.CrossRefGoogle Scholar
  12. 12.
    Murakami, M., Otsuka, H., Suzuki, H. G. et al., Complete shape memory effect in polycrystalline Fe−Mn−Si alloys, inProc. ICOMAT-86, Jpn. Inst. Metals, Sendai: Jpn. Inst. Metals, 1987, 985–990.Google Scholar
  13. 13.
    Sato, A., Yamaji, Y., Mori, T., Physical properties controlling shape memory effect in Fe−Mn−Si alloys,Acta Metall., 1986, 34: 287.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Xuejun Jin
    • 1
  • Zuyao Xu
    • 1
  • T. Y. Hsu
    • 1
  • Lin Li
    • 2
  1. 1.Department of Materials ScienceShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations