Advertisement

EstimationsL p pour une classe d’opérateurs pseudo-différentiels dans le cadre du calcul de Weyl-Hörmander

  • Julio Delgado
Article

Abstract

Dans cet article, nous établissons des résultats concernant les propriétés de bornitudeL p pour une classe convenable d’opérateurs pseudo-différentiels dans le cadre du calcul de Weyl-Hörmander.

Références

  1. [1]
    R. Beals,Characterization of pseudodifferential operators and applications, Duke Math. J.44 (1977), 45–57.CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    R. Beals,L P and Hölder estimates for pseudodifferential operators: necessary conditions, Harmonic Analysis in Euclidean Spaces (Proc. Symp. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 2, Amer. Math. Soc., Prov, R. I., 1979, pp. 153–157.Google Scholar
  3. [3]
    R. Beals,L p and Hölder estimates for pseudodifferential operators: sufficient conditions, Ann. Inst. Fourier (Grenoble)29 (1979), 239–260.MathSciNetMATHGoogle Scholar
  4. [4]
    R. Beals,Weighted distribution spaces and pseudodifferential operators, J. Analyse Math.39 (1981), 131–187.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    J.-M. Bony et J.-Y. Chemin,Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France122 (1994), 77–118.MathSciNetMATHGoogle Scholar
  6. [6]
    J.-M. Bony et N. Lerner,Quantification asymptotique et microlocalisation d’ordre superieur I, Ann. Sci. Ecole Norm. Sup. (4)22 (1989), 377–433.MathSciNetMATHGoogle Scholar
  7. [7]
    N. Bourbaki,Eléments de Mathématique, Livre IX, Hermann, Paris, 1949.Google Scholar
  8. [8]
    C. E. Cancelier, J.-Y. Chemin et C.-J. Xu,Calcul de Weyl et opérateurs sous-elliptiques, Ann. Inst. Fourier (Grenoble)43 (1993), 1157–1178.MathSciNetMATHGoogle Scholar
  9. [9]
    J.-Y. Chemin et C.-J. Xu,Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. Ecole Norm. Sup. (4)30 (1997), 719–751.MathSciNetMATHGoogle Scholar
  10. [10]
    R. Coifman et G. Weiss,Analyse harmonique non-commutative sur certains espaces homogénes, Lectures Notes in Math, 242, Springer-Verlag, Berlin and New York, 1971.MATHGoogle Scholar
  11. [11]
    R. Coifman et G. Weiss,Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc.83 (1977), 569–645.CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    C. Fefferman,L p bounds for pseudo-differential operators, Israel J. Math.14 (1973), 413–417.CrossRefMathSciNetMATHGoogle Scholar
  13. [13]
    C. Fefferman et D. H. Phong,Subelliptic eigenvalue problems, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth, Belmont, CA, 1983, pp. 590–606.Google Scholar
  14. [14]
    L. Hörmander,The Weyl Calculus of Gseudo-Differential Operators, Comm. Pure Appl. Math.32 (1979), 359–443.CrossRefMATHGoogle Scholar
  15. [15]
    L. Hörmander,The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, 1985.Google Scholar
  16. [16]
    A. Nagel, E. M. Stein and S. Wainger,Balls and metrics defined by vector fields I: basic properties, Acta Math.155 (1985), 103–147.CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    E. M. Stein,Harmonic Analysis, Princeton University Press, Princeton, 1993.MATHGoogle Scholar
  18. [18]
    M. Taylor,Pseudodifferential Operators, Princeton University Press, Princeton, 1981.MATHGoogle Scholar
  19. [19]
    R. Wang and Ch. Li,On the L p-Boundedness of several classes of pseudo-differential operators. Chinese Ann. Math. Ser. B5 (1984), 193–213.MathSciNetMATHGoogle Scholar

Copyright information

© Hebrew University 2006

Authors and Affiliations

  1. 1.Université Paris 6France

Personalised recommendations