Skip to main content
Log in

Convergence of a class of degenerate Ginzburg-Landau functionals and regularity for a subelliptic harmonic map equation

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

In this paper, we consider a class of Ginzburg-Landau functionalsE ε associated with a couple of non-commuting vector fields which yield a “degenerate” energy. We study the asymptotic behavior of the minimizers, showing that it does not depend on the topological degree of the boundary datum; and we prove uniqueness and regularity of the minimizer of the limit problem, in spite of the lack of lifting theorems in the natural function spaces for the limit functional.

Résumé

Dans cet article, nous considérons une classe de fonctionnellesE ε du type Ginzburg-Landau associée a un couple de champs de vecteurs définissant une énergie dégénérée. Nous étudions le comportement asymptotique des minimiseurs. Nous démontrons que ce comportement ne dépend pas du degré topologique de la donnée a la frontiere et nous prouvons l’unicité et la régularité du minimiseur du probléme limite, malgré l’absence d’un théorème de lifting dans les espaces de Sobolev naturels pour la même fonctionnelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Achdou, B. Franchi and N. Tchou,A partial differential equation connected to option pricing with stochastic volatility: regularity results and discretization. Math. Comp.74 (2005), 1291–1322.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Bethuel, H. Brezis and F. Hélein,Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var. Partial Differential Equations1 (1993), 123–148.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Bethuel, H. Brezis and F. Hélein,Ginzburg-Landau Vortices. Birkhäuser Boston, Boston, MA 1994.

    MATH  Google Scholar 

  4. F. Bethuel and X. M. Zheng,Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal.80 (1988), 60–75.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. M. Bony,Principe, du maximum, inégalité de Harnack et unicité du problèm de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble)19 (1969), 277–304.

    MathSciNet  MATH  Google Scholar 

  6. A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice,A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys.142 (1991), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Brezis,Degree theory: old and new, inTopological Nonlinear Analysis, II. (Frascati, 1995), Birkhäuser Boston, Boston, MA, 1997, pp. 87–108.

    Google Scholar 

  8. J. Bourgain, H. Brezis and P. Mironescu,Lifting in Sobolev spaces, J. Anal. Math.80 (2000), 37–86.

    MathSciNet  MATH  Google Scholar 

  9. D. Danielli, N. Garofalo and D. M. Nhieu,Non-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Carathéodory Spaces, Mem. Amer. Math. Soc.182, Providence RI, 2006.

  10. M. Derridj and C. Zuily,Regularité C à la frontiére d’opérateurs dégénérés, C. R. Acad. Sci. Paris Sér. A–B271, (1970), A786-A788.

    MathSciNet  Google Scholar 

  11. B. Franchi,Trace theorems for anisotropic weighted Sobolev spaces in a corner, Math. Nachr.127 (1986), 25–50.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Franchi,Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc.327 (1991), 125–158.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Franchi, C. E. Gutiérrez and R. L. Wheeden,Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations19 (1994), 523–604.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Franchi and E. Lanconelli,Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4)10, (1983), 523–541.

    MathSciNet  MATH  Google Scholar 

  15. B. Franchi and R. Serapioni,Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)14 (1987), 527–568.

    MathSciNet  MATH  Google Scholar 

  16. B. Franchi, R. Serapioni and F. Serra Cassano,Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math.22 (1996), 859–890.

    MathSciNet  MATH  Google Scholar 

  17. B. Franchi, R. Serapioni and F. Serra Cassano,Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7)11 (1997), 83–117.

    MathSciNet  MATH  Google Scholar 

  18. B. Franchi and R. L. Wheeden,Compensation couples and isoperimetric estimates for vector fields, Coll. Math.74 (1997), 9–27.

    MathSciNet  MATH  Google Scholar 

  19. Friedrichs, K. O.,The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc.55 (1944), 132–151.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Garofalo and D. M. Nhieu,Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot Carathéodory spaces, J. Anal. Math.74 (1998), 67–97.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Hajłasz and P. Strzelecki,Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann.312 (1998), 341–362.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Hörmander,Hypoelliptic second-order differential equations, Acta Math.119 (1967), 147–171.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Jerison,The Poincaré inequality for vector fields satisfying Hörmander condition, Duke Math. J.53 (1986) 503–523.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Jost and C. J. Xu,Subelliptic harmonic maps, Trans. Amer. Math. Soc.350 (1998), 4633–4649.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Lu,Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Mat.40 (1996), 301–329.

    MathSciNet  MATH  Google Scholar 

  26. V. G. Mazja,Sobolev Spaces, Springer-Verlag, Berlin Heidelberg, 1985.

    MATH  Google Scholar 

  27. R. Monti,Distances, Boundaries and Surface Measures in Carnot-Carathéodory Spaces, Ph.D. Thesis Series, Department of Mathematics, University of Trento31, 2001.

  28. R. Monti and D. Morbidelli,Trace theorems for vector fields, Math. Z.239 (2002), 747–776.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Monti and D. Morbidelli,Non-tangentially accessible domains for vector fields, Indiana Univ. Math. J.54 (2005), 473–498.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Nagel, E. M. Stein and S. Wainger,Balls and metrics defined by vector fields I: basic properties, Acta Math.155 (1985), 103–147.

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Rothschild and E. M. Stein,Hypoelliptic differential operators and nilpotent groups, Acta Math.137 (1976), 247–320.

    Article  MathSciNet  Google Scholar 

  32. G. Stampacchia,Le problème de Dirichlet puor les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble)15 (1965), 189–258.

    MathSciNet  MATH  Google Scholar 

  33. J. Väisälä,Uniform domains, Tohoku Math. J.40, (1988), 101–118.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Franchi.

Additional information

The authors were supported by University of Bologna, funds for selected research topics, and by GNAMPA of the INDAM, Italy, project “Analysis in metric spaces and subelliptic equations.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franchi, B., Serra, E. Convergence of a class of degenerate Ginzburg-Landau functionals and regularity for a subelliptic harmonic map equation. J. Anal. Math. 100, 281–322 (2006). https://doi.org/10.1007/BF02916764

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916764

Keywords

Navigation