Composite Eshelby model and domain band geometries of ferroelectric ceramics



A method of composite Eshelby inclusion is proposed for a ferroelectric grain with domain switching embedded in a polycrystalline ferroelectric matrix. The method quantifies the twinning structure due to spontaneous polarization, as well as the conventional and non-conventional domain structures after poling induced domain reorientation of 90 degree. The predicted parameters include the volume fraction, the thickness, and the surface inclination angle of switched domain plates. The domain wall energy for non-conventional domain structures is derived in terms of the arrays of misfit dislocations. The domain geometries predicted by the present work agree with the measured domain morphology near an indentation crack tip when subjected to lateral electric field.


ferroelectric ceramics domain switching spontaneous polarization Eshelby model domain structures domain wall energy 


  1. 1.
    Landau, L. D., Lifshitz, E., Physik. Zeits. Sowjetunion, 1935, 8: 153.MATHGoogle Scholar
  2. 2.
    Kittel, C., Theory of the structure of Ferromagnetic domains in films and small particles, Phys. Rev., 1946, 70: 965–971.CrossRefGoogle Scholar
  3. 3.
    Mitsui, T., Furuichi, J., Domain structure of Rochelle salt and KH2PO4, Physical Review, 1953, 90: 193–202.CrossRefGoogle Scholar
  4. 4.
    Merz, W. J., Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phy. Rev., 1954, 95: 690–698.CrossRefGoogle Scholar
  5. 5.
    Landauer, R., Electrostatic considerations in BaTiO3 domain formation during polarization reversal, J. Appl. Phys., 1957, 28: 227–234.CrossRefGoogle Scholar
  6. 6.
    Rosakis, P., Jiang, Q., On the morphology of ferroelectric domains, Int. J. Engng. Sci., 1995, 33: 1–12MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Arlt, G., Twinning in ferroelectric and ferroelastic ceramics. J. Mater. Sci., 1990, 25: 2655–2666.CrossRefGoogle Scholar
  8. 8.
    Arlt, G., The influence of microstructure on the properties of ferroelectric ceramics, Ferroelectrics, 1990, 104: 207–227.Google Scholar
  9. 9.
    Zhang, Z., Raj, R., Influence of grain size on ferroelastic toughening and piezoelectric behavior of lead zirconate titanate, J. Am. Ceram. Soc., 1995, 78: 3363–3368.CrossRefGoogle Scholar
  10. 10.
    Loge, R. E., Suo, Z., Nonequilibrium thermodynamics of ferroelectric domain evolution, Acta Mater., 1996, 44: 3429–3438.CrossRefGoogle Scholar
  11. 11.
    Hu, H. L., Chen, L. Q., Computer simulation of 90° ferroelectric domain formation and evolution, Mater. Sci. Engng., 1997, A238: 182–189.CrossRefGoogle Scholar
  12. 12.
    Mura, T., Micromechanics of Defects in Solids, Amsterdam: Nijhoff, 1987.Google Scholar
  13. 13.
    McMeeking, R. M., Hwang, S. C., On the potential energy of a piezoelectric inclusion and the criterion for ferroelectric switching, Ferroelectrics, 1997, 200: 151–173.CrossRefGoogle Scholar
  14. 14.
    Eshelby, J. D., Determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Society London Ser. 1957, A241: 376–396.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Hu, Y. H., Chan, H. M., Zhang, X. W. et al., Scanning electron microscopy and transmission electron microscopy study of ferroelectric domains in doped BaTiO3, J. Amer. Ceram. Soc., 1986, 69: 594–602.CrossRefGoogle Scholar
  16. 16.
    Fang, F., Yang, W., Zhu, T., Crack tip 90° switching in tetragonal lanthanum-modified lead zirconia titanate under an electric field, Journal of Materials Research, 1999, 14: 2940–2944.CrossRefGoogle Scholar
  17. 17.
    Fang, D. N., Li, C. Q., Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic, J. Mater. Sci., 1999, 34: 4001–4010.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations