Incorporation of cadmium into proteins in a cadmium tolerant fungi

  • A. A. Razak


Aspergillus carbonarius and a strain ofPenicillium, a cadmium tolerant fungi, are able to metabolize cadmium chloride up to 2% (w/v). Their amino acids analysis on cadmium free and cadmium chloride containing media indicated certain disorders in their metabolic activities. Cystathionine was only detected in both fungi in the presence of cadmium chloride. However, cadmium was incorporated into several types of low and high molecular weight proteins. The amino acids hydrolyzates of a cadmium containing protein are characterized by the presence of high levels of sulfur amino acids; cysteine and methionine. Ethylasparagine was detected in the hydrolyzate of that cadmium containing protein as well.

Index Entries

Cadmium-tolerant fungi cadmium proteins Aspergillus carbonarius strain ofPenicillium Cd/protein ratio 


  1. 1.
    M. Margoshes and B. L. Vallee,J. Am. Chem. Soc. 79, 4813–4814 (1957).CrossRefGoogle Scholar
  2. 2.
    J. H. R. Kagi and L. L. Vallee,J. Biol. Chem. 235, 3460–3465 (1960).PubMedGoogle Scholar
  3. 3.
    J. H. R. Kagi and G. L. Vallee,J. Biol. Chem. 236, 2435–2442 (1961).PubMedGoogle Scholar
  4. 4.
    P. Pulido, J. H. R. Kagi, and B. L. Vallee,Biochem. 5, 1768–1776 (1966).CrossRefGoogle Scholar
  5. 5.
    R. H. O. Buhler and J. H. R. Kagi,FEBS Lett. 39, 229–234 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Piscator,Nord. Hyg. Tidskr 45, 76–82 (1964).PubMedGoogle Scholar
  7. 7.
    G. Nordberg, M. Nordberg, M. Piscator, and O. Vesterberg,Biochem. J. 126, 491–498 (1972).PubMedGoogle Scholar
  8. 8.
    M. Nordberg, B. Trojanowska, and G. Nordberg,Environ. Physiol. Biochem. 5, 396–403 (1974).Google Scholar
  9. 9.
    J. H. R. Kagi, S. R. Himmelhoch, P. Whanger, J. Bethune, and B. L. Vallee,J. Biol. Chem. 249, 3537–3542 (1974).PubMedGoogle Scholar
  10. 10.
    Y. Kojima, C. Berger, B. L. Vallee and J. H. R. Kagi,Proc. Natl. Acad. Sci. USA 73, 3413–3417 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    F. N. Kotsonis and C. D. Klassen,Toxicol Appl. Pharmacol. 41, 667–680 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    S. E. Ramadan, A. A. Razak, and H. G. Soliman,Biol. Trace. Element Res. 18, 179–190 (1988).CrossRefGoogle Scholar
  13. 13.
    R. L. Bieleski and N. A. Turner,Anal. Biochem. 17, 278–298 (1966).PubMedCrossRefGoogle Scholar
  14. 14.
    S. E. Ramadan, A. A. Razak, A. M. Ragab, and M. El-Meleigy,Biol. Trace. Element Res. 20, (3) 225–232 (1989).CrossRefGoogle Scholar
  15. 15.
    O. H. Lowry, N. J. Rosebrough, A. L. Furr, and R. J. Randell,J. Biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  16. 16.
    B. L. Davis,Ann. NY Acad. Sci. 121, 404–427 (1964).PubMedCrossRefGoogle Scholar
  17. 17.
    A. I. VogelA Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 3rd ed., Longmans, Green and Co. Ltd., 1961, pp. 800–801.Google Scholar
  18. 18.
    S. E. Ramadan, Ph.D. thesis, University of London (1980).Google Scholar
  19. 19.
    D. A. Bender,Amino Acid Metabolism, J. Wiley, 1978, p. 59.Google Scholar
  20. 20.
    G. Rotilio,Metalloproteins, U. Weser ed., Verlag Stuttgart, New York, 1979, pp. 1–81.Google Scholar
  21. 21.
    M. Nordberg and Y. Kojina,Metallothionein, J. H. R. Kagi and M. Nordberg ed., Birkhauser, Basle, 1979, pp. 41–124.Google Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • A. A. Razak
    • 1
  1. 1.Department of Botany, Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations