N-Hydroxysuccinimide-activated glycine-sepharose

Hydrolysis of activated groups and coupling of amino compounds
  • G. A. J. Besselink
  • T. Beugeling
  • A. Bantjes


Glycine-Sepharose CL 6B, activated with 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide (EDC) andN-hydroxysuccinimide (NHS), was used as a model compound to study the hydrolysis and aminolysis of immobilized HNS-activated groups. For comparison, the soluble analogN-t-BOC-glycine-NHS has been used.

Coupling of amino compounds, such as aminoethanol, aminohexane, amino acids, and esters of amino acids, is fast and efficient in both organic medium and buffered aqueous medium, e.g., coupling of aminoethanol is complete within 1 min. Hydrolysis of the activated groups in aqueous medium is general base catalyzed and is, particularly in borate buffer and at higher pH (>9.0), accelerated by addition of salt. The NHS-activated glycine-CL 6B is less sensitive toward hydrolysis as compared toN-t-BOC-glycine-NHS.

When amino compounds are coupled to NHS-activated Sepharose in aqueous medium, the use of a low buffer concentration and a pH of 8.5–9.0, without salt, is recommended. In combination with salt, phosphate buffer is preferred.

Index Entries

Sepharose carbodiimide N-hydroxysuccinimide hydrolysis immobilization 


  1. 1.
    Wilchek, M., Miron, T., and Kohn, J. (1984),Methods in Enzymol. 104, 3–53.CrossRefGoogle Scholar
  2. 2.
    Brummer, W. (1979),J. Solid-Phase Biochem. 4, 171–187.Google Scholar
  3. 3.
    Aplin, J. D. and Hall, L. D. (1980),Eur. J. Biochem. 110, 295–309.CrossRefGoogle Scholar
  4. 4.
    Inman, J. K. and Dintzis, H. M. (1969),Biochemistry 8, 4074–4082.CrossRefGoogle Scholar
  5. 5.
    Cuatrecasas, P. (1970),J. Biol. Chem. 245, 3059–3065.Google Scholar
  6. 6.
    Hoare, D. G. and Koshland, D. E. (1967),J. Biol. Chem. 242, 2447–2453.Google Scholar
  7. 7.
    Davies, G. E. and Stark, G. R. (1970),Proc. Nat. Acad. Sci. USA 66, 651–656.CrossRefGoogle Scholar
  8. 8.
    Pittner, F., Miron, T., Pittner, G., and Wilchek, M. (1980),J. Solid-Phase Biochem. 5, 147–166.Google Scholar
  9. 9.
    Cuatrecasas, P. and Parikh, J. (1972),Biochemistry 11, 2291–2298.CrossRefGoogle Scholar
  10. 10.
    Andre, C., De Backer, J. P., Guillet, J. C., Vanderheyden, P., Vanquelin, G., and Strosberg, A. D. (1983),EMBO J. 2, 499–504.Google Scholar
  11. 11.
    Corti, A. and Cassani, G. (1985),Appl. Biochem. Biotechnol. 11, 101–109.CrossRefGoogle Scholar
  12. 12.
    Wilchek, M. and Miron, T. (1987),Biochemistry 26, 2155–2161.CrossRefGoogle Scholar
  13. 13.
    Pollak, A., Blumenfeld, H., Wax, M., Baughn, R. L., and Whitesides, G. M. (1980),J. Am. Chem. Soc. 102, 6324–6336.CrossRefGoogle Scholar
  14. 14.
    Noah, O. V., Litmanovich, A. D., and Plate, N. A. (1974),J. Polym. Sci. 12, 1711–1725.Google Scholar
  15. 15.
    Plate, N. A. (1976),Pure Appl. Chem. 46, 49–59.CrossRefGoogle Scholar
  16. 16.
    Adalsteinsson, O., Lamotte, A., Baddour, R. F., Colton, C. K., Pollak, A., and Whitesides, G. M. (1979),J. Mol. Cat. 6, 199–225.CrossRefGoogle Scholar
  17. 17.
    Euranto, E. K. (1969), inThe Chemistry of Carboxylic Acids and Esters, Patai, S. ed., Interscience Publishers, p. 524, 525.Google Scholar
  18. 18.
    Cline, G. W. and Hanna, S. B. (1988),J. Org. Chem. 53, 3583–3586.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • G. A. J. Besselink
    • 1
  • T. Beugeling
    • 1
  • A. Bantjes
    • 1
  1. 1.Department of Chemical TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations