Advertisement

Synthesis of Cyclodextrin Glucosyl Transferase byBacillus cereus for the production of cyclodextrins

  • R. Jamuna
  • N. Saswathi
  • R. Sheela
  • S. V. Ramakrishna
Article

Abstract

A potent indigenous bacillus isolate identified asBacillus cereus (RJ-30) was found to produce Cyclodextrin Glucosyl Transferase (CGTase) extracellularly. Process optimization of various fermentation parameters has been established for optimal growth of bacillus and the maximum enzyme synthesis. The organism had the highest specific growth rate (0.7μ) with a generation time of 1 h in glucose containing medium at the conditions of pH 7.0, 37°C at 300 rpm, 1.5 vvm of agitation, and aeration. At these conditions, it exhibited the maximum activity of 54 U/mL at the synthesis rate of 2.7 U/L/h. CGTase was produced from the early exponential growth and peaked during the midsporulating stage of about 16 h thereafter maintained at the same level of 50 U/mL. Saccharides containing media were better inducers than starch, and the influence of carbohydrate substrates has shown that enzyme synthesis is promoted by xylose (65 U/mL) and, more remarkably, by the supplementation of wheat bran extract in glucose medium (106 U/mL). This organism produced CGTase stably in a chemostat culturing over a period of 400 h with a maximum productivity of 5.4 kU/L/h (threefold higher than obtained in batch culturing [1.75 kU/L/h]). Comparatively, CGTase was produced by immobilized cells in a continuous fluidized bed reactor for over approx 360 h, at a relatively high dilution rate of 0.88 h−1 resulting in the productivity of 23.0 kU/L/h.

Index Entries

Bacillus cereus CGTase cyclodextrins 

References

  1. 1.
    Clarke, R. S., Coates, T. H., and Lincoln, S. F. (1988),Adv. Carbohydrate Chem. Biochem. 40, 205–249.CrossRefGoogle Scholar
  2. 2.
    Kitahata, S. and Okada, S. (1982),J. Ap. Soc. Starch Sci. 29, 7–12.Google Scholar
  3. 3.
    Nakamura, N. and Horikoshi, K. (1976),Agr. Biol. Chem. 40, 935–941.Google Scholar
  4. 4.
    Vokk, R. and Krosing, V. (1990), inProceedings of 5th International Symposium on Cyclodextrins, 62–66.Google Scholar
  5. 5.
    Makela, M. J., Paavilanen, S. K., and Korpela, T. K. (1988), inProceedings of 4th Intenational Symposium on Cyclodextrins, 27–31.Google Scholar
  6. 6.
    Bender, H. (1986),Adv. Biotechnol. Processes 6, 31–71.Google Scholar
  7. 7.
    Kimura, K., Takano, T., and Yamane, K. (1987),Appl. Microbiol. Biotechnol. 26, 149–153.CrossRefGoogle Scholar
  8. 8.
    Palaheemo, M., Hgglund, D., Aho, S., and Korhola, M. (1992),Appl. Micro. Biotechnol. 36, 584–591.Google Scholar
  9. 9.
    Jamuna, R. and Ramakrishna, S. V. (1992),Enzyme. Microb. Technol. 14, 36–41.CrossRefGoogle Scholar
  10. 10.
    Lowry, O. H., Roseburgh, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265–275.Google Scholar
  11. 11.
    Miller, G. L. (1959),Analytical Chem. 31, 426–428.CrossRefGoogle Scholar
  12. 12.
    Nakamura, N. and Horikoshi, K. (1976),Agr. Biol. Chem.,40, 753–757.Google Scholar
  13. 13.
    Jose, G. S. and Yong, K. P. (1992), Starke44, 225–229.CrossRefGoogle Scholar
  14. 14.
    Yong, G., Fei, L., Zhi-Yong, P., Zhen-Yuon, Y., and Korus, R. A. (1990),Biotechnol. Bioeng. 35, 99–102.CrossRefGoogle Scholar
  15. 15.
    Crump, P. S. and Rozzell, J. D. (1988), inProceedings of 4th International Symposium on Cyclodextrins, 47–55.Google Scholar
  16. 16.
    Nakamura, N. and Horikoshi, K. (1977),Biotech. Bioeng. 19, 87.CrossRefGoogle Scholar
  17. 17.
    Kato, T. and Horikoshi, K. (1984),Biotech. Bioeng.,26, 595–598.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • R. Jamuna
    • 1
  • N. Saswathi
    • 1
  • R. Sheela
    • 1
  • S. V. Ramakrishna
    • 1
  1. 1.Biotechnology DivisionRegional Research LaboratoryTrivandrumIndia

Personalised recommendations