Skip to main content
Log in

Phenol oxidases production and wood degradation by a thermophilic fungusThermoascus aurantiacus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The ability of a Brazilian strain ofThermoascus aurantiacus, a thermophilic fungus, to produce extracellular phenol oxidases and to degradeEucalyptus grandis sawdust was studied.T. aurantiacus was capable of good growth in liquid culture containing 1.5% (w/v) of various lignocellulosic substrates (sugar cane bagasse, rice hulls, and chips and sawdust ofE. grandis) plus 5 mg/mL of glucose. When lignocellulosic substrates were used, enzymes involved in cellulose and hemicellulose metabolism were stimulated inT. aurantiacus. It was also found that these substrates have an inductive effect on phenol oxidase production. The most effective inducer of phenol oxidase activity wasE. grandis sawdust, which led to the production of 0.80 U/mL (o-dianisidine oxidation) on day 12. Low phenol oxidase activity was observed at cultures when only glucose was used. Cultures ofT. aurantiacus also exhibited cellobiose-quinone oxidoreductase activity when lignocellulosic materials were used as substrate. However, under our experimental conditions, lignin peroxidase activity was not detected.E. grandis sawdust supplemented with 5 mg/mL of glucose suffered a total weight loss of 6.7% accompanied by 15% lignin loss and 64.4% extractive loss after 21 d incubation withT. aurantiacus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma, H. S. S. (1989),Appl. Microbiol. Biotechnol. 31, 1.

    Article  Google Scholar 

  2. Kawamori, M., Takayama, K., and Takasawa, S. (1987),Agric. Biol. Chem. 51, 647.

    CAS  Google Scholar 

  3. Tan, L. U. L., Mayers, P. and Saddler, J. N. (1987),Can. J. Microbiol. 33, 689.

    Article  CAS  Google Scholar 

  4. Feldman, K. A., Lovett, J. S., and Tsao, G. T. (1988),Enzyme Microbiol. Technol. 10, 262.

    Article  CAS  Google Scholar 

  5. Khandke, K. M., Vithayathil, P. J., and Murthy, S. R. (1989),Arch. Biochem. Biophys. 274, 491.

    Article  CAS  Google Scholar 

  6. Adams, P. R. (1991),Biotechnol. Appl. Biochem. 13, 430.

    CAS  Google Scholar 

  7. Adams, P. R. (1992),Biotechnol. Appl. Biochem. 15, 311.

    CAS  Google Scholar 

  8. Ander, P. and Eriksson, K.-E. (1976),Arch. Microbiol. 109, 1.

    Article  CAS  Google Scholar 

  9. Tien, M. and Kirk, T. K. (1983),Science 221, 661.

    Article  CAS  Google Scholar 

  10. Glenn, J. K. and Gold, M. H. (1983),Appl. Environ. Microbiol. 45, 1741.

    CAS  Google Scholar 

  11. Ishihara, T. (1980), InLignin Biodegradation: Microbiology, Chemistry, and Potential Applications, vol. 2, Kirk, T. K., Higuchi, T., and Chang, H. M., eds., CRC Press Inc., Boca Raton, FL, 17–32.

    Google Scholar 

  12. Higuchi, T. (1990),Wood Sci. Technol. 24, 23.

    Article  CAS  Google Scholar 

  13. Westermark, U. and Eriksson, K.-E. (1974),Acta Chem. Scand. B28, 209.

    CAS  Google Scholar 

  14. Eriksson, K.-E. (1990),Wood Sci. Technol. 24, 79.

    Article  CAS  Google Scholar 

  15. Ander, P., Mishra, C., Farrell, R. L., and Eriksson, K.-E. (1990),J. Biotechnol. 13, 189.

    Article  CAS  Google Scholar 

  16. Samejima, M. and Eriksson, K.-E. (1991),FEBS Lett 292, 151.

    Article  CAS  Google Scholar 

  17. Barrichelo, L. E. G. (1987),Bol. Biotechnol., FEALQ (Brazil) 8, 2.

    Google Scholar 

  18. Auer, C. G., Ferrari, M. P., Tomazello Filho, M., and Barrichelo, L. E. G. (1987),IPEF, Piracicaba, Brazil 37, 45.

    Google Scholar 

  19. Fengel, D. and Wegener, G. (1984), InWood: Chemistry, Ultrastructure, Reactions, De Gruyter, Berlin, New York, 182–222.

    Google Scholar 

  20. Auer, C. G. (1986), MSC Dissertation, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, Brazil.

  21. DIFCO Manual (1978), DIFCO Laborotories, Michigan, USA, 245.

  22. Szklarz, G. D., Antibus, R. K., Sinsabaugh, R. L., and Linkins, A. E. (1989),Mycol. 81, 234.

    Article  CAS  Google Scholar 

  23. Tien, M. and Kirk, T. K. (1984),Proc. Natl. Acad. Sci. USA 81, 2280.

    Article  CAS  Google Scholar 

  24. Mandels, S. M., Andreotti, R., and Roche, C. (1976),Biotechnol. Bioeng. Symp. 6, 21.

    CAS  Google Scholar 

  25. Miller, G. L. (1959),Anal. Chem. 31, 426.

    Article  CAS  Google Scholar 

  26. Pereira, H. and Sardinha,R. (1984),Appita 37, 661.

    CAS  Google Scholar 

  27. Westermark, U. and Eriksson, K.-E. (1975),Acta Chem. Scan. B29, 419.

    Article  CAS  Google Scholar 

  28. Dekker, R. F. H. (1980),J. Gen. Microbiol. 120, 309.

    CAS  Google Scholar 

  29. Morpeth, F. F. (1985),Biochem. J. 228, 557.

    CAS  Google Scholar 

  30. Kirk, T. K. and Shimada, M. (1985), InBiosynthesis and Biodegradation of Wood Components. Higuchi, T., ed., Academic, Orlando, FL, 579–605.

    Google Scholar 

  31. Kirk, T. K. and Farrell, R. L. (1987),Ann. Rev. Microbiol. 41, 465.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machuca, A., Durán, N. Phenol oxidases production and wood degradation by a thermophilic fungusThermoascus aurantiacus . Appl Biochem Biotechnol 43, 37–44 (1993). https://doi.org/10.1007/BF02916428

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916428

Index Entries

Navigation