Skip to main content
Log in

Immobilization ofAspergillus niger NRC 107 xylanase and β-xylosidase, and properties of the immobilized enzymes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus niger NRC 107 xylanase and β-xylosidase were immobilized on various carriers by different methods of immobilization, including physical adsorption, covalant binding, ionic binding, and entrapment. The immobilized enzymes were prepared by physical adsorption on tannin-chitosan, ionic binding onto Dowex-50W, covalent binding on chitosan beads through glutaraldehyde, and entrapment in polyacrylamide had the highest activities. In most cases, the optimum pH of the immobilized enzymes were shifted to lower than those of free enzymes. The optimum reaction temperature of immobilized xylanase was shifted from 50°C to 52.5–65°C, whereas that of immobilized β-xylosidase was shifted from 45°C to 50–60°C. TheK m values of immobilized enzymes were higher than those of native enzymes. The operational stability of the immobilized enzymes was evaluated in continuous operation in packed-bead column-type reactors. The enzymes covalently bounded to chitosan showed the highest operational stability. However, the enzymes immobilized by physical adsorption or by ionic binding showed a low operational stability. The enzymes entrapped in polyacrylamide exhibited lower activity, but better operational stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dekker, R. F. H. (1985), inBiosynthesis and Biodegradiation of Wood Components, Higuchi, ed., Inc, Orlando, FL, p. 505.

  2. Yu, E. K. C. and Saddler, J. N. (1985),Trends Biotechnol. 3, 100.

    Article  CAS  Google Scholar 

  3. Yu, E. K. C., Deschatelets, L., Louis-Seiz, G., and Saddler, N. J. (1985),Appl. Environ. Microbiol. 50, 924.

    CAS  Google Scholar 

  4. Kantelinen, A., Ranua, M., Rattoo, M., Viikari, L., Sundqvist, J., and Linko, M. (1988), inProceedings of the International Pulp Bleaching Conference, Tappi, p. 1.

  5. Viikari, L., Kantelinen, A., Poutanen K., and Ranua, M. (1990), inProceedings of the 4th International Conference of Biotechnology in the Pulp and Paper Industry, Kirk, T. K. and Chang, H.-M., eds., p. 145.

  6. Sharma, H. S. S. (1987),Appl. Microbil., Biotechnol. 26, 358.

    CAS  Google Scholar 

  7. Puls, J., Sinner, M., and Deitriches. (1991). US Patent No. 4275159, Class C12 N 11/18, C12 N 11/14, C12 N 9/14.

  8. Oguntimein, C. B. and Reilly, P. J. (1980),Biotechnol. Bioeng. 22, 1127.

    Article  CAS  Google Scholar 

  9. Roy, P. K., Roy, U., and Dube, D. K. (1984),J. Chem. Tech. Biotechnol. 34(B), 165.

    Google Scholar 

  10. Tavobilov, I. M., Rodionova, N. A., Baltsere, D., Yu. Aren, A. K., and Bezborodov, A. M. (1985),Prikl. Biochem. Microbiol. 21(6), 794.

    CAS  Google Scholar 

  11. Shimizu, K. and Ishihara, M. (1987),Biotechnol. Bioeng. XXIX, 236.

    Article  Google Scholar 

  12. Abdel-Naby, M. A. and Kown, D. Y. (1992),Korean J. Appl. Microbiol. Biotechnol. 20(5), 543.

    CAS  Google Scholar 

  13. Adbel-Naby, M. A., El-Shaybe, N. M. A., and El-Diwany, A. I. (1992),African J. Agric. Sci. (in press).

  14. Matsumoto, I., Mizuno, Y., and Seno, N. (1979),J. Biochem. 85, 1091.

    CAS  Google Scholar 

  15. Watanabe, T., Matuo, Y., Mori, T., Sano, R., Tosa, T., and Chibata, I. (1978),J. Solid-Phase Biochem. 3, 161.

    CAS  Google Scholar 

  16. March, S. C., Parikh, I., and Cuatrecasas, P. (1974),Anal. Biochem. 60, 149.

    Article  CAS  Google Scholar 

  17. Weetall, H. H. (1970),Biochim. Biophys. Acta. 212, 1.

    CAS  Google Scholar 

  18. Dixon, J. E., Stolzenbach, F. E., Berenson, J. A., and Kaplan, N. O. (1973),Biochem. Biophys. Res. Commun. 52, 905.

    Article  CAS  Google Scholar 

  19. Somogyi, M. (1952),J. Biol. Chem. 195, 19.

    CAS  Google Scholar 

  20. McGrath, R. (1972),Anal. Biochem. 49, 95.

    Article  CAS  Google Scholar 

  21. Toldra, F., Jansen, N. B., and Tsao, G. T. (1986),Biotechnol. Lett. 8, 785.

    Article  CAS  Google Scholar 

  22. Wong, K. K. Y., Tan, L. U. L., and Saddler, J. N. (1988),Microbiol. Rev. 52(3), 305.

    CAS  Google Scholar 

  23. Lomako, O. V., Menyailova, I. I., and Nakhapetyan, L. A. (1982),Enzyme Microb. Technol. 4, 89.

    Article  CAS  Google Scholar 

  24. Siso, M. I., Grab, M., Condoret, J. S., and Combes, D. (1990),J. Chem. Technol. 48, 185.

    Article  CAS  Google Scholar 

  25. Ohtakara, A., Mukerjee, G., and Mitsutomi, M. (1988), inProceedings of 4th International Conference on Chitin and Chitosan, Skjak-Break, G., Anthonsen, T., and Standford, P., eds., Trondheim, Norway, p. 643.

    Google Scholar 

  26. Kusano, S., Shiraishi, T., Takahashi, S.-I., Fujimoto, D., and Sakano, Y. (1989),J. Ferment. Bioeng. 68(4), 233.

    Article  CAS  Google Scholar 

  27. Gottschalk, N. and Jaenicke, R. (1991),Biotechnol. Appl. Biochem. 14, 324.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Naby, M.A. Immobilization ofAspergillus niger NRC 107 xylanase and β-xylosidase, and properties of the immobilized enzymes. Appl Biochem Biotechnol 38, 69–81 (1993). https://doi.org/10.1007/BF02916413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916413

Index Entries

Navigation