Immobilization as a tool for the stabilization of lignin peroxidase produced byPhanerochaete chrysosporium INA-12

  • Michele Asther
  • Jean-Claude Meunier


Lignin peroxidase immobilization was achieved by covalent coupling on CNBr-Sepharose 4B. Protein immobilization yield was around 80%. For veratryl alcohol oxidation, in the presence of hydrogen peroxide, both soluble and bound enzymes exhibited the same pH profile with an optimum near 2.5. Catalytic parameters (kc andK m ) were seriously affected by immobilization. On the other hand, immobilization provided a noticeable stabilization of the enzyme against acidic pH and high temperatures. A 15–20 increase in the half-inactivation times at pH 2.2 and 2.7, respectively, could be observed. Bound enzyme was also much more thermostable than soluble.

Index Entries

Lignin peroxidase immobilization stabilization Phanerochaete chrysosporium 


  1. 1.
    Tien, M. and Kirk, T. K. (1983),Science 221, 661.CrossRefGoogle Scholar
  2. 2.
    Glenn, J. K., Morgan, M. A., Mayfield, M. B., Kuwahara, M., and Gold, M. H. (1983),Biochem. Biophys. Res. Commun. 114, 1077.Google Scholar
  3. 3.
    Kurek, B., Monties, B., and Odier E. (1990),Enzyme Microb. Technol. 12, 771.CrossRefGoogle Scholar
  4. 4.
    Hammel, K. E. and Moen, M. A. (1991),Enzyme Microb. Technol. 13, 15.CrossRefGoogle Scholar
  5. 5.
    Buswell, J. A. and Odier, E. (1987),CRC Crit. Rev. Biotechnol. 6, 1.CrossRefGoogle Scholar
  6. 6.
    Kirk, T. K. and Farrell, R. L. (1987),A. Rev. Microbiol. 41, 465.CrossRefGoogle Scholar
  7. 7.
    Bumpus, J. A., Tien, M., Wright, D., and Aust, S. D. (1985),Science 228, 1434.CrossRefGoogle Scholar
  8. 8.
    Eaton, D. C. (1985),Enzyme Microb. Technol. 7, 194.Google Scholar
  9. 9.
    Arjmand, M. and Sandermann, H. (1985),J. Agric. Fd Chem. 33, 1053.Google Scholar
  10. 10.
    Bumpus, J. A. and Aust, S. D. (1987),Appl. Environ. Microbiol. 53, 2001.Google Scholar
  11. 11.
    Leisola, M. S. A., Kozulic, B., Meussdoerffer, F., and Fiechter, A. (1987),J. Biol. Chem. 262, 419.Google Scholar
  12. 12.
    Farrell, R. L., Murtagh, K. E., Tien, M., Mozuch, M. D., and Kirk, T. K. (1989),Enzyme Microb. Technol. 11, 322.CrossRefGoogle Scholar
  13. 13.
    Glumoff, T., Harvey, P. J., Molinari, S., Goble, M., Frank, G., Palmer, J. M., Smit, J. D. G., and Leisola, M. S. A. (1990),Eur. J. Biochem. 187, 515.CrossRefGoogle Scholar
  14. 14.
    Asther, M., Vilter, H., Kurek, B., and Meunier, J. C. (1992),Int. J. Biochem. 24, 1377.CrossRefGoogle Scholar
  15. 15.
    Aitken, M. D. and Irvine, R. L. (1989),Biotech. Bioeng. 34, 1251.CrossRefGoogle Scholar
  16. 16.
    Tuissel, H., Sinclair, R., Bumpus, J. A., Ashbaugh, W., Broch, B. J., and Aust, S. D. (1990),Archs Biochem. Biophys. 279, 158.CrossRefGoogle Scholar
  17. 17.
    Tien, M., Kirk, T. K., Bull, C., and Fee, J. A. (1986),J. Biol. Chem. 261, 1687.Google Scholar
  18. 18.
    Martinek, K., Klibanov, A. M., Goldmacher, V. S., and Berezin, I. V. (1977),Biochem. Biophys. Acta 485, 1.Google Scholar
  19. 19.
    Klinanov, A. M. (1979),Analyt. Biochem. 93, 1.CrossRefGoogle Scholar
  20. 20.
    Mosbach, K. (1980),TIBS 1, 1.Google Scholar
  21. 21.
    Martinek, K. and Mozhaev, V. V. (1985),Adv. Enzymol. 57, 180.Google Scholar
  22. 22.
    Pietikäinen, P. and Adlercreutz, P. (1990),Appl. Microbiol. Biotechnol. 33, 455.CrossRefGoogle Scholar
  23. 23.
    Fawer, M. S., Stierli, J., Cliffe, S., and Fiechter, A. (1991),Biochem. Biophys. Acta 1076, 15.Google Scholar
  24. 24.
    Capdevila, C., Corrieu, G., and Asther, M. (1989),J. Ferm. Technol. 68, 60.CrossRefGoogle Scholar
  25. 25.
    Tien, M. and Kirk, T. K. (1984),Proc. Natl. Acad. Sci. USA 81, 2280.CrossRefGoogle Scholar
  26. 26.
    Muheim, A., Leisola, M. S. A., and Schoemaker, H. E. (1990),J. Biotechnol. 13, 159.CrossRefGoogle Scholar
  27. 27.
    Smith, P. K., Korhn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985),Anal. Biochem. 150, 76.CrossRefGoogle Scholar
  28. 28.
    Stich, T. M. (1990),Anal. Biochem. 191, 343.CrossRefGoogle Scholar
  29. 29.
    Scouten, W. H. (1987),Methods in Enzymology, vol. 135, Mosbach, K., Academic Press, London, pp. 30–65.Google Scholar
  30. 30.
    Ferrer, I., Dezotti, M., and Duran, M. (1991),Biotechnol. Lett. 13, 577.CrossRefGoogle Scholar
  31. 31.
    Khmelnitsky, Y. L., Levashov, A. V., Klyachko, N. L., and Martinek, K. (1988),Enzyme Microb. Technol. 10, 710.CrossRefGoogle Scholar
  32. 32.
    Zaks, A. and Russel, A. J. (1988),J. Biotechnol. 8, 259.CrossRefGoogle Scholar
  33. 33.
    Kurek, B., Monties, B., and Odier, E. (1990),Holtzforschung 44, 407.CrossRefGoogle Scholar
  34. 34.
    Klibanov, A. M. (1983),Adv. Appl. Microbiol. 29, 1.Google Scholar
  35. 35.
    Barclay, C. D., Moore, D. M., Lander, S. R., and Legge, R. L. (1990),Enzyme Microb. Technol. 12, 778.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Michele Asther
    • 1
  • Jean-Claude Meunier
    • 1
  1. 1.Laboratoire de Chimie Biologique I.N.R.A.-C.B.A.I.Institut National Agronomique, Centre de GrignonThiverval-GrignonFrance

Personalised recommendations