Metallurgical and Materials Transactions B

, Volume 27, Issue 4, pp 663–671 | Cite as

Solidification of particle-reinforced metal-matrix composites

  • G. S. Hanumanth
  • G. A. Irons


The solidification behavior of ceramic particle-reinforced metal-matrix composites (MMCs) is different from that of the bare matrix, not only because of the presence of the ceramic particles, but also due to their redistribution in the melt that results in nonhomogeneous thermophysical properties. The MMCs comprised of 10-to 15-μm SiC particles of varying volume fractions, dispersed uniformly in a modified aluminum A356 alloy by the melt stirring technique, were solidified unidirectionally in a thermocouple-instrumented cylindrical steel mold. The cooling rates were continually monitored by measuring temperatures at different depths in the melt, and the solidified MMCs were sectioned into disks and chemically analyzed for SiC volume fraction. The results point out that the cooling rate increased with increasing volume fraction of SiC particles. A small increase in the bulk SiC volume fraction of the cast MMC was observed due to particle settling during solidification. A one-dimensional enthalpy model of MMC solidification was formulated, wherein particle settling occurring in the solidifying matrix was coupled to the enthalpy equation by means of the Richardson-Zaki hindered settling correlation. A comparative study of simulations with experiments suggested that the thermal response of SiC particles used in this study was similar to that of single crystals, and their presence increased the effective thermal conductivity of the composite.


Material Transaction Effective Thermal Conductivity Mushy Zone Particle Volume Fraction Particle Settling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.K. Rohatgi, R. Asthana, and S. Das:Int. Met. Rev., 1986, vol. 31, pp. 115–39.Google Scholar
  2. 2.
    M. Yemmou, M.A. Azouni, and P. Casses:J. Cryst. Growth, 1993, vol. 128, pp. 1130–36.CrossRefGoogle Scholar
  3. 3.
    D.M. Stefanescu, B.K. Dhindaw, S.A. Kacar, and A. Moitra:Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.Google Scholar
  4. 4.
    R. Sasikumar:Metall. Trans. A, 1992, vol. 23A, pp. 2326–30.Google Scholar
  5. 5.
    Y. Wu, H. Liu, and E.J. Lavernia:Acta. Metall. Mater., 1994, vol. 42, pp. 825–37.CrossRefGoogle Scholar
  6. 6.
    J.A. Sekhar and R. Trivedi:Mater. Sci. Eng., 1991, vol. A147, pp. 9–21.Google Scholar
  7. 7.
    A. Mortensen and I. Jin:Int. Mater. Rev., 1992, vol. 37, pp. 101–28.Google Scholar
  8. 8.
    G.S. Hanumanth and G.A. Irons:J. Mater. Sci., 1993, vol. 28, pp. 2459–65.CrossRefGoogle Scholar
  9. 9.
    G.S. Hanumanth, G.A. Irons, and S. Lafreniere:Metall. Trans. B, 1992, vol. 23B, pp. 753–63.CrossRefGoogle Scholar
  10. 10.
    G.A. Irons and K. Owusu-Boahen:Metall Mater. Trans. B, 1995, vol. 26B, pp. 981–89.CrossRefGoogle Scholar
  11. 11.
    N. Setargew, B.A. Parker, and M.J. Couper:Proc. Advanced Composites 93, Wollongong, Australia, TMS, Warrendale, PA, 1993.Google Scholar
  12. 12.
    D.J. Lloyd:Comp. Sci. Technol., 1989, vol. 35, pp. 159–79.CrossRefGoogle Scholar
  13. 13.
    A. Labib, H. Liu, and F.H. Samuel:Mater. Sci. Eng., 1993, vol. A160, pp. 81–90.Google Scholar
  14. 14.
    V.R. Voller and C.R. Swaminathan:Metall Trans. B, 1992, vol. 23B, pp. 651–54.Google Scholar
  15. 15.
    J.F. Richardson and W.N. Zaki:Trans. Inst. Chem. Eng., 1954, vol. 32, pp. 35–53.Google Scholar
  16. 16.
    R.B. Bird, W.E. Stewart, and E.L. Lightfoot:Transport Phenomena, John Wiley and Sons, New York, NY, 1960, p. 60.Google Scholar
  17. 17.
    J.P. Holman:Heat Transfer, McGraw Hill, New York, NY, 1986.Google Scholar
  18. 18.
    S.V. Patankar:Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980.Google Scholar
  19. 19.
    B. Carnahan, H.A. Luther, and J.O. Wilkes:Applied Numerical Methods, John Wiley and Sons, New York, NY, 1969Google Scholar
  20. 20.
    M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974.Google Scholar
  21. 21.
    I. Dustin and W. Kurz:Z. Metallkd., 1986, vol. 77, pp. 265–73.Google Scholar
  22. 22.
    C. Zweben:JOM, 1992, vol. 44, pp. 15–23.Google Scholar
  23. 23.
    Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens:Thermophvsical Properties of Matter, The TPRC Data Series, IFI/Plenum, New York, NY, 1970, vol. 2, pp. 585–87.Google Scholar
  24. 24.
    E.A. Burgeimeister, W. von Muench, and E. Pettenpaul:J. Appl. Phys., 1979, vol. 50, pp. 5790–94.CrossRefGoogle Scholar
  25. 25.
    W.R. Hoover: inFabrication of Particulates Reinforced Metal Composites, J. Masounave and F.G. Hamel, eds., ASM International, Materials Park, OH, 1990, pp. 115–23.Google Scholar
  26. 26.
    D. Rose: Duralcan USA, San Diego, CA, private communication, 1994.Google Scholar
  27. 27.
    F. Ajersch and M. Mada: Internal Report, Le Centre de Developpement Technologique de L’Ecole Polytechnique, Montreal, Feb. 1989.Google Scholar
  28. 28.
    Metals Handbook, ASM International, Materials Park, OH, 1990, vol. 2.Google Scholar
  29. 29.
    C.J. Smithells:Metals Reference Book, 4th ed., Plenum Press, New York, NY, 1967.Google Scholar
  30. 30.
    R.E. Kirk and D.E. Othmer:Encyclopedia of Chemical Technology, 3rd ed., John Wiley and Sons, New York, NY, 1979, vol. 5.Google Scholar
  31. 31.
    Metals Handbook, 9th ed., ASM International, Metals Park, OH, 1988, vol. 15.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1996

Authors and Affiliations

  • G. S. Hanumanth
    • 1
  • G. A. Irons
    • 1
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations