Skip to main content
Log in

The transported entropy of Na+ in solid state cryolite

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The transported entropy of Na+ in mixtures of NaF (s) and Na3AlF6 (s) is determined from thermocell experiments. The experiments were favorably described by the electric work method. The variation observed in the thermocell electromotive force (emf) with composition can be explained from the probable path of charge transfer in the electrolyte. The transported entropies are S*cry Na+ = 140 ± 7 J K−1 mol−1 for cryolite and S*NaFNa+ = 81 ± 8 J K−1 mol−1 for sodium fluoride between 380 °C and 500 °C. The value obtained for sodium in the solid cryolite makes us predict that the transported entropy for Na+ in themolten electrolyte mixture for aluminum production is substantial and that the reversible heat effects in the aluminum electrolysis cell are the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.K. Ratkje, V.S. Sharivker, and B. Cleaver:Electrochim. Acta, 1994, vol. 39, pp. 2659–64.

    Article  CAS  Google Scholar 

  2. B. Cleaver and V.S. Sharivker:J. Electrochem. Soc., 1995. vol. 142. pp. 3409–13.

    Article  CAS  Google Scholar 

  3. S.K. Ratkje:Electrochim. Acta, 1991, vol. 36, pp. 661–65.

    Article  CAS  Google Scholar 

  4. K.S. Førland, T. Forland, and S.K. Ratkje:Irreversible Thermodynamics. Theory and Applications, 2nd ed., Wiley, Chichester, 1994.

    Google Scholar 

  5. V.M. Mozhaev, P.V. Polyakov, and L.M. Afans’eva:Sov. J. Non-Ferrous Met., 1972, vol. 13, p. 28.

    Google Scholar 

  6. V.M. Mozhaev and P.V. Polyakov:Izv. Vyssh. Uchebn. Zav. Tsvet. Met., 1980, vol. 23, pp. 37–39.

    Google Scholar 

  7. G.J. Landon and A.R. Ubbelohde:Proc. R. Soc. (London), 1957, vol. 240, pp. 160–72.

    Article  CAS  Google Scholar 

  8. E.W. Dewing:Trans. TMS-AIME, 1969, vol. 245, pp. 1829–30.

    CAS  Google Scholar 

  9. H.G. Hertz and S.K. Ratkje:J. Electrochem. Soc., 1989. vol. 136, pp. 1698–1704.

    Article  CAS  Google Scholar 

  10. L.J. Miles and I.W. Jones:Proc. Br. Ceram. Soc., 1971, vol. 19, pp. 179–91.

    Google Scholar 

  11. G. Borelius:Ann. Phys., 1920, vol. 63, pp. 845–66; 1921, vol. 65, pp. 520–40.

    Article  Google Scholar 

  12. JANAF Thermochemical Tables, 3rd ed., National Bureau of Standards, New York, NY, 1986, pp. 112 and 1037.

  13. S.K. Ratkje and Y. Tomii:J. Electrochem. Soc., 1993, vol. 140, pp. 59–66.

    Article  Google Scholar 

  14. D.R. Spearing, J.F. Stebbins, and I. Farnan:Phys. Chem. Minerals, 1994, vol. 21, pp. 373–86.

    Article  CAS  Google Scholar 

  15. J.N. Agar:Thermogalvanic Cells in Advance in Electrochemistry and Electrochemical Engineering, P. Delahay, ed., Interscience Publishers, New York, NY, 1963, vol. 3, pp. 70 and 108–21.

    Google Scholar 

  16. R. Ødegård, S. Julsrud, A. Solheim, and K. Thovsen:Metall. Trans. B, 1991, vol. 22B, pp. 831–37.

    Article  Google Scholar 

  17. A. Grimstvedt: Ph.D. Thesis, Norwegian Institute of Technology, University of Trondheim, Trondheim, 1992.

    Google Scholar 

  18. B.E. Flem, S.K. Ratkje, and Å. Sterten:Light Met., 1996, pp. 203–209.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Institute of Structural Macrokinetics, Russian Academy of Science, Chernogolovka, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharivker, V.S., Ratkje, S.K. The transported entropy of Na+ in solid state cryolite. Metall Mater Trans B 27, 788–793 (1996). https://doi.org/10.1007/BF02915608

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915608

Keywords

Navigation