Skip to main content
Log in

A review of major progresses in mesoscale dynamic research in China since 1999

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale analysis and the perturbation method which are suitable for describing mesoscale vortices; (b) subcritical instability and vortex-sheet instability; (c) frontal adjustment mechanism and the effect of topography on frontgenesis; and (d) slantwise vorticity development theories, the slantwise vortex equation, and moist potential vorticity (MPV) anomalies with precipitation-related heat and mass sinks and MPV impermeability theorem. From the MPV conservation viewpoint, the transformation mechanism between different scale weather systems is analyzed. Based on the data analysis, a new dew-point front near the periphery of the West Pacific subtropical high is identified. In the light of MPV theory and Q-vector theory, some events associated with torrential rain systems and severe storms are analyzed and diagnosed. Progress in mesoscale numerical simulation has been made in the development of meso-α, meso-β vortices, meso-γ-scale downbursts and precipitation produced by deep convective systems with MM5 and other mesoscale models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bei Naifang, and Zhao Sixiong, 2002a: Mesoscale analysis of severe local heavy rainfall during the second stage of the 1998 Meiyu season.Chinese J. Atmos. Sci.,4, 526–540. (in Chinese)

    Google Scholar 

  • Bei Naifang, and Zhao Sixiong, 2002b: Effect of initial data and physical processes on the heavy rainfall prediction in July 1998.Climatic and Environmental Research,7, 386–396. (in Chinese)

    Google Scholar 

  • Bei Naifang, Zhao Sixiong, and Gao Shouting, 2002: Numerical simulation of a heavy rainfall event in China during July 1998.Meteor. Atmos. Phys.,80, 153–164.

    Article  Google Scholar 

  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rain bands.Quart. J. Roy. Meteor. Soc.,105, 945–962.

    Article  Google Scholar 

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current.J. Meteor.,4, 135–162.

    Article  Google Scholar 

  • Chen Hua, and Tan Zhemin, 1999: Helicity dynamics in tropical cyclone.Journal of Tropical Meteorology,15, 81–85. (in Chinese)

    Google Scholar 

  • Cheng Linsheng, and Feng Wuhu, 2001: Analyses and numerical simulation on an abrupt heavy rainful and structure of a mesoscale vortex during July 1998.Chinese Journal of Atmospheric Sciences,25, 465–478.

    Google Scholar 

  • Cheng Linsheng, and Feng Wuhu, 2003: Structural evolution of the genesis and development on meso-β vortex for the “98.7” heavy rainfall: Simulation of two ways with quartet nested grid.Acta Meteorologica Sinica,61, 385–395.

    Google Scholar 

  • Cui Xiaopeng, Wu Guoxiong, and Gao Shouting, 2002: Numerical simulation and isentropic analysis of frontal cyclones over the western Atlantic Ocean.Acta Meteor. Sinica,60, 385–399. (in Chinese)

    Google Scholar 

  • Cui Xiaopeng, Gao Shouting, and Wu Guoxiong, 2003: Moist potential vorticity and up-sliding slantwise vorticity development.Chinese Physics Letters,20, 167–169.

    Article  Google Scholar 

  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices in simulated convective systems.J. Atmos. Sci.,51, 2005–2030.

    Article  Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves.Tellus,1, 33–52.

    Article  Google Scholar 

  • Eliassen, A., 1962: On the Vertical Circulation in frontal Zones.Geofys. Publ.,24, 147–160.

    Google Scholar 

  • Emanual, K. A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids.J. Atmos. Sci.,36, 2425–2449.

    Article  Google Scholar 

  • Emanual, K. A., 1982: Inertial instability and mesoscale convective systems. Part II: Symmetric CISK in a baroclinic flow.J. Atmos. Sci.,39, 1080–1098.

    Google Scholar 

  • Emanual, K. A., 1983a: The lagrangian parcel dynamics of moist symmetric instability.J. Atmos. Sci.,40, 2368–2376.

    Article  Google Scholar 

  • Emanual, K. A., 1983b: On assessing local conditional symmetric instability from atmospheric soundings.Mon. Wea. Rev.,111, 2016–2033.

    Article  Google Scholar 

  • Emanual, K. A., 1985: Comments on “inertial instability and mesoscale convective systems. Part I”.J. Atmos. Sci.,42, 747–752.

    Article  Google Scholar 

  • Ertel, H., 1942:Ein neuer hydrodynamische wirbdsatz. Meteorology Zeitschr, Braunschweig, 277–281. (in German)

    Google Scholar 

  • Fang Juan, and Wu Rongsheng, 2001: Topographic effect on geostrophic adjustment and frontogenesis.Adv. Atmos. Sci.,18, 524–538.

    Article  Google Scholar 

  • Fei Shiqiang, and Tan Zhemin, 2001: On the helicity dynamics of severe convective storms.Adv. Atmos. Sci.,18, 67–86.

    Article  Google Scholar 

  • Fritsch, J. M., and R. A. Maddox, 1981: Convectively driven mesoscale weather systems aloft. Part 1: Observations.J. Appl. Meteor.,20, 9–19.

    Article  Google Scholar 

  • Fulton, S. R., W. H. Schubert, and S. A. Hausman, 1995: Dynamical adjustment of mesoscale convection anvils.Mon. Wea. Rev.,123, 3215–3226.

    Article  Google Scholar 

  • Gao Kun, and Xu Yamai, 2001: A simulation study of structure of mesovortexes along Meiyu front during 22–30 June 1999.Chinese Journal of Atmospheric Sciences,25, 740–756.

    Google Scholar 

  • Gao Shouting, 2000: The instability of the vortex sheet along the shear line.Adv. Atmos. Sci.,17, 525–537.

    Article  Google Scholar 

  • Gao Shouting, and Sun Shuqing, 1986: The instability of mesoscale fluctuation distinguished with Richardson number.Chinese. J. Atmos. Sci.,10, 171–182.

    Google Scholar 

  • Gao Shouting, and Chen Hui, 2000: The studies of lee waves over a big topography through the rotating tank experiments.Acta Meteor. Sinica,58, 653–664. (in Chinese)

    Google Scholar 

  • Gao Shouting, and Lei Ting, 2000: Stream vorticity equation.Adv. Atmos. Sci.,17, 339–347.

    Article  Google Scholar 

  • Gao Shouting, and Zhou Yushu, 2001: The instability of the vortex sheet along the horizontal shear line.Acta Meteor. Sinica,59, 393–403. (in Chinese)

    Google Scholar 

  • Gao Shouting, and Ping Fan, 2003: Laboratory studies of the stratified rotating flow passing over an isolated obstacle.Chinese Physics Letters,20, 1094–1097.

    Article  Google Scholar 

  • Gao Shouting, Zhou Yushu, and Lei Ting, 2002a: Structural features of the Meiyu frontal system.Acta Meteor. Sinica,60, 195–204. (in Chinese)

    Google Scholar 

  • Gao Shouting, Lei Ting, and Zhou Yushu, 2002b: Moist potential vorticity anomaly with heat and mass forcing in torrential rain systems.Chinese Physics Letters,19, 878–880.

    Article  Google Scholar 

  • Gao Shouting, Lei Ting, Zhou Yushu, and Dong Min, 2002c: Diagnostic analysis of moist potential vorticity anomaly in torrential rain systems.Chinese J. Appl. Meteor.,13, 662–670.

    Google Scholar 

  • Gray, M. E. B., 1999: An investigation into convectively generated potential-vorticity anomalies using a massforcing model.Quart. J. Roy. Meteor. Soc.,125, 1589–1605.

    Article  Google Scholar 

  • Gray, M. E. B., G. J. Shutts, and G. C. Craig, 1998: The role of mass transfer in describing the dynamics of mesoscale convective systems.Quart. J. Roy. Meteor. Soc.,124, 1183–1207.

    Article  Google Scholar 

  • Hoskins, B. J., 1971: Atmospheric frontogenesis models, some solutions.Quart. J. Roy. Meteor. Soc.,97, 139–153.

    Article  Google Scholar 

  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability.Quart. J. Roy. Meteor. Soc.,100, 480–482.

    Article  Google Scholar 

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution.J. Atmos. Sci.,29, 11–37.

    Article  Google Scholar 

  • Hoskins, B. J., and P. Berridford, 1988: A potential vorticity perspective of the storm of 15–16 October 1987.Weather,43, 122–129.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. Mcintyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps.Quart. J. Roy. Meteor. Soc.,111, 877–946.

    Article  Google Scholar 

  • Keyser, D., and R. Rotunno, 1990: On the formation of potential-vorticity anomalies in upper-level jet-front systems.Mon. Wea. Rev.,118, 1914–1921.

    Article  Google Scholar 

  • Kuo, H. L., 1956: Forced and free meditional circulations in the atmosphere.J. Meteor.,13, 561–568.

    Article  Google Scholar 

  • Lu Hancheng, Cheng Wen, Zhu Min, Song Xiaoliang, and Kang Jiawei, 2002: Mechanism study of meso-β vortex system of heavy rain in Meiyu front.Journal of PLA University of Science and Technology,3, 70–76. (in Chinese)

    Google Scholar 

  • Lu Huijuan and Gao Shouting, 2003: On the Helility and the helicity eguation.Acta Meteorogica Sinica,61, 684–691.

    Google Scholar 

  • Lu Weisong, 1996: A new nonlinear barotropic stability criterion including Ekman friction.Nonlinear World,3, 787–801.

    Google Scholar 

  • Lu Weisong, 2001: A new criterion of nonlinear barotropic stability including Ekman friction.Acta Meteor. Sinica,59, 641–651. (in Chinese)

    Google Scholar 

  • Lu Weisong, Jiang Dunshuang, and Zhang Huinian, 2001: Numerical experiments on subcritical instability in baroclinic atmosphere.Journal of Nanjing Institute of Meteorology,24, 299–307. (in Chinese)

    Google Scholar 

  • Margules, M., 1906: Uber Temperaturschichtung in stationar bewegter und ruhender luft Hann-Band.Meteor. Z., 243–254.

  • Ogura Y., H. -M. Juang, K. -S. Zhang, and S. -T. Soong, 1982: Possible triggering mechanisms for severe storms in SESAME-AVE IV (9–10 May 1979).Bull. Amer. Meteor. Soc.,63, 503–515.

    Google Scholar 

  • Ooyama, K., 1966: On the stability of baroclinic circular vortex: A sufficient criterion for instability.J. Atmos. Sci.,23, 43–53.

    Article  Google Scholar 

  • Qiu, C. -J., J. -W. Bao, and Q. Xu, 1993: Is the mass sink due to precipitation negligible?Mon. Wea. Rev.,121, 853–857.

    Article  Google Scholar 

  • Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis.Proc. Roy. Soc. London,A234, 346–362.

    Article  Google Scholar 

  • Scorer, R. S., 1997:Dynamics of Meteorology and Climate. PAXIS Publishing LTD, 686pp.

  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines.J. Atmos. Sci.,51, 2563–2584.

    Article  Google Scholar 

  • Shou Shaowen, and Li Yaohui, 1999: Study on moist potential vorticity and symmetric instability during a heavy rain in the Jiang-Huai valleys.Adv. Atmos. Sci.,16, 314–321.

    Article  Google Scholar 

  • Shou Shaowen, Li Yaohui, and Fan Ke, 2001: Isentropic potential vorticity analysis of the mesoscale cyclone development in a heavy rain process.Acta. Meteor. Sinica,59, 560–568. (in Chinese)

    Google Scholar 

  • Shutts, G. J., and M. E. B. Gray, 1994: A numerical modelling study of the geostrophic adjustment process following deep convection.Quart. J. Roy. Meteor. Soc. 120, 1145–1178.

    Google Scholar 

  • Song Xiaoliang and Lu Hancheng, 2001: A non-hydrostatic model for deep moist slantwise convection and numerical study of the conditional symmetric instability.Chinese J. Atmos. Sci.,25, 503–514.

    Google Scholar 

  • Stone, P. H., 1966: Frontogenesis by horizontal wind deformation fields.J. Atmos. Sci.,23, 455–465.

    Article  Google Scholar 

  • Sun Jianhua, and Zhao Sixiong, 2000: A diagnosis and simulation study of a strong heavy rainfall in South China.Chinese J. Atmos. Sci.,23, 381–392.

    Google Scholar 

  • Sun Jianhua, and Zhao Sixiong, 2002a: A study of mesoscale convective systems and its environmental fields during the June 1994 record heavy rainfall in South China. Part I: A numerical simulation study of meso-β convective system inducing heavy rainfall.Chinese J. Atmos. Sci.,26, 541–557.

    Google Scholar 

  • Sun Jianhua, and Zhao Sixiong, 2002b: A study of mesoscale convective systems and its environmental fields during the June 1994 record heavy rainfall in South China. Part II: Effect of physical processes, initial environmental fields and topography on meso-β convective system.Chinese J. Atmos. Sci.,26, 633–646.

    Google Scholar 

  • Tan Zhemin, and Wu Rongsheng, 2000a: A theoretical study of low-level frontal structure in the boundary layer over orography. Part 1: Cold front and uniform geostrophic flow.Acta Meteor. Sinica,58, 137–150. (in Chinese)

    Google Scholar 

  • Tan Zhemin, and Wu Rongsheng, 2000b: A theoretical study of low-level frontal structure in the boundary layer over orography. Part 2: Warm front and uniform geostrophic flow.Acta Meteor. Sinica,58, 265–277. (in Chinese)

    Google Scholar 

  • Wang Chunming, Wu Rongsheng, and Wang Yuan, 2002: Interaction of Frontogenesis and moisture processes in coldfrontal-band.Adv. Atmos. Sci.,19, 544–561.

    Article  Google Scholar 

  • Wang Liwei, Lu Hancheng, and Zhong Ke, 2000: The symmetry instability of the thermal wind non-equilibrium basic flow and its dynamical diagnosis in the vortex atmosphere.Journal of PLA University of Science and Technology,1, 86–91. (in Chinese)

    Google Scholar 

  • Wang Xingrong, Wu Kejun, and Shi Chune, 1999: The introduction of condensation probability function and the dynamic equations on non-uniform saturated moist air.Journal of Tropical Meteorology,15, 64–70. (in Chinese)

    Google Scholar 

  • Wang Xingrong, Wu Kejun, Shi Chune, Zheng Yuanyuan, and Lu D.-C., 2000b:The dynamic mechanism of the happening of sudden heavy rain in Mid-latitude and the premonitory character in Doppler radar and cloud chart. International Game/HuBEX Workshop, 101–104. (in Chinese)

  • Wang Xingbao, and Wu Rongsheng, 1999: Interaction of orographic disturbance with front.Adv. Atmos. Sci.,16, 467–481.

    Article  Google Scholar 

  • Wang Yungeng, Wu Rongsheng, and Pan Yinong, 2000c: Evolution and frontogenesis of an imbalanced flow - The influence of vapor distribution and orographic forcing,Adv. Atmos. Sci.,17, 256–274.

    Article  Google Scholar 

  • Williams, R. T., and J. Plotkin, 1968: Quasi-geostrophic frontogenesis.J. Atmos. Sci.,25, 201–206.

    Article  Google Scholar 

  • Wu Guoxiong, 2001: Comparison between the completeform vorticity equation and the traditional vorticity equation.Acta Meteor. Sinica,59, 285–392. (in Chinese)

    Google Scholar 

  • Wu Guoxiong, and Cai Yaping, 1997: Vertical wind shear and down-sliding slantwise vorticity development.Acta Atmos. Sinica,21, 273–281. (in Chinese)

    Google Scholar 

  • Wu Guoxiong, Cai Yaping, and Tang Xiaojing, 1995: Moist potential vorticity and slantwise vorticity development.Acta Meteor. Sinica,53, 387–405. (in Chinese)

    Google Scholar 

  • Wu Guoxiong, Cai Yaping, Tang Xiaojing, and Liu Huanzhu, 1998: Vertical vorticity development owing to down sliding at slantwise isentropic surface.Dyn. Atmos. Oceans,27, 715–743.

    Article  Google Scholar 

  • Wu Guoxiong, Cai Yaping, Tang Xiaojing, and Liu Huanzhu, 1999: Complete form of vertical vorticity tendency equation and slantwise vorticity development.Acta Meteor. Sinica,57, 1–13. (in Chinese)

    Google Scholar 

  • Wu Haiying, and Shou Shaowen, 2002: Potential vorticity disturbance and cyclone development.Journal of Nanjing Institute of Meteorology,25, 510–517. (in Chinese)

    Google Scholar 

  • Wu Rongsheng, and Fang Juan, 2001a: Mechanism of balanced flow and frontogenesis.Adv. Atmos. Sci. 18, 323–334.

    Article  Google Scholar 

  • Wu Rongsheng, and Fang Juan, 2001b: Geostrophic adjustment and frontogenesis.Journal of PLA University of Science and Technology,2, 1–6. (in Chinese)

    Google Scholar 

  • Xu, Q., and J. H. E. Clark, 1985: The nature of symmetric instability and its similarity to convective inertial instability.J. Atmos. Sci.,42, 2880–2883.

    Article  Google Scholar 

  • Xu, Q., and J. H. E. Clark, 1986a: Conditional symmetric instability and mesoscale rainbands.Quart. J. Roy. Meteor. Soc.,112, 315–334.

    Article  Google Scholar 

  • Xu, Q., and J. H. E. Clark, 1986b: Generalized energetics for linear and nonlinear symmetric instability.J. Atmos. Sci.,43, 972–984.

    Article  Google Scholar 

  • Xu, Q., and J. H. E. Clark, 1989: Extended Sawyer-Eliassen equation for frontal circulations in the presence of small viscous moist symmetric instability.J. Atmos. Sci.,46, 2671–2683.

    Article  Google Scholar 

  • Zhang, D. -L., and J. M. Fritsch, 1987: Numerical simulation of the meso-beta-scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex.J. Atmos. Sci.,44, 2593–2612.

    Article  Google Scholar 

  • Zhang, D.-L., E. Radeva, and J. Gyakum, 1999: A family of frontal cyclones over the Western Atlantic Ocean. Part 1: A 60-h simulation.Mon. Wea. Rev.,127, 1725–1744.

    Article  Google Scholar 

  • Zhang Kesu, 1988a: Mesoscale instability of baroclinic stream I: Symmetry instability.Acta Meteor. Sinica,46, 258–268. (in Chinese)

    Google Scholar 

  • Zhang Kesu, 1988b: Mesoscale instability of baroclinic stream II: Transversal instability.Acta Meteor. Sinica,46, 385–391. (in Chinese)

    Google Scholar 

  • Zhang Lifeng, and Zhang Ming, 1992: WAVE-CISK and symmetric instability.Chinese J. Atmos. Sci.,16, 669–676.

    Google Scholar 

  • Zhang Lifeng, Zhang Ming, Wang Liqong, and Zhang Ming, 2001: A study of instability of ageostrophic vortex wave on the condition of vertical shearing basic flow.Chinese. J. Atmos. Sci.,25, 391–400.

    Google Scholar 

  • Zhang Lifeng, Wang Liqong, and Zhang Ming, 2002: Influences of Richardson number on the instability of meso-á scale vortex wave.Chinese J. Atmos. Sci.,26, 677–683.

    Google Scholar 

  • Zhang Ming, and Zhang Lifeng, 2000: The study on the instability of mesoscale eddy wave. Review of atmospheric sciences and look into its future at the beginning of 21st century.Proceedings, Third Conference on Leading Course of Atmospheric Sciences, China Meteorological Press, 149–152. (in Chinese)

  • Zhang Xiaoling, Tao Shiyan, and Zhang Qingyun, 2002b: An analysis on development of meso-β convective system along Meiyu front associated with flood in Wuhan in 20–21 July 1998 (in Chinese).Quart. J. Appl. Meteor.,4, 385–397.

    Google Scholar 

  • Zhang Ying and Zhang Ming, 1995: Numerical experiment of linear and non-linear symmetry instability.Acta Meteor. Sinica,53, 225–231. (in Chinese)

    Google Scholar 

  • Zhang Ying and Zhang Ming, 1998: Numerical study on linear and non-linear transversal instability.Acta Meteor. Sinica,56, 447–457. (in Chinese)

    Google Scholar 

  • Zhou Yushu, Deng Guo, and Huang Yihong, 2003: Analysis on instability condition during a torrential rain over Yangzi river basin.Acta Meteor. Sinica,61, 323–333. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Xiaoping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiaoping, Z., Hancheng, L., Yunqi, N. et al. A review of major progresses in mesoscale dynamic research in China since 1999. Adv. Atmos. Sci. 21, 497–504 (2004). https://doi.org/10.1007/BF02915576

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915576

Key words

Navigation