Endocrine Pathology

, 2:64 | Cite as

Functioning and nonfunctioning adrenal medullary tumors

  • Noriko Kimura


Recent development of imaging tools such as computed tomography, ultrasonography, and magnetic resonance imaging have incidentally discovered hormonally functioning or nonfunctioning adrenal tumors. Most adrenal medullary tumors are pheochromocytomas and neuroblastoma group tumors. They are representative of neuroendocrine tumors and can be diagnosed using neuroendocrine markers such as chromogranin A, synaptophysin, and neurofilament proteins. Catecholamine-synthesizing enzymes are also useful markers for these catecholamine-producing tumors. Both pheochromocytoma and neuroblastoma group tumors have cells that are immunohistochemicaJly positive for many peptide hormones including m-enkephalin, neuropeptide Y, somatostatin, vasoactive intestinal peptide, corticotropinreleasing hormone, adrenocorticotropic hormone, calcitonin, and calcitonin gene-related peptide, among others. The evidence for production of these hormones is confirmed by mRNA analysis using in situ hybridization or Northern blot hybridization and by measuring protein levels with radioimmunoassay. Only a limited number of patients, however, complain of clinical symptoms associated with excessive peptide hormone production such as watery diarrhea, hypokalemia, and achlorhydria syndrome or Cushing’s syndrome. The monoclonal human neuroblastoma cell line (NB-1) is a good model by which to understand the mechanism of excessive hormone production. NB-1 cells are usually nonfunctioning, but when they are stimulated by cyclic adenosine monophosphate and phorbol ester, they become capable of production and release of many peptide hormones and undergo morphological changes in their endocrine features. Thus, microenvironmental change seems to be one of the factors regulating gene expression and hormone production. Some molecular studies of oncogenes and growth factors are reviewed to gain an understanding of cell differentiation and proliferation. Finally, several chromosomal abnormalities reported in multiple endocrine neoplasia are introduced as potential tumorigenic factors.


Vasoactive Intestinal Peptide Multiple Endocrine Neoplasia Type Adrenal Medulla Multiple Endocrine Neoplasia Watery Diarrhea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Babu V, Van Dyke KL, Jakson CE. Chromosome 20 deletion in human multiple endocrine neoplasia type 2A and 2B: a double blind study. Proc Natl Acad Sci USA 81:2525–2528, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplication of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124, 1984.PubMedCrossRefGoogle Scholar
  3. 3.
    Fahrenkrug J. Evidence of common precursors but different processing of VIP and PHM in VIP-producing tumors. Peptides 6:357–361, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Geelhoed GW, Drug EM. Management of the adrenal “incidentaloma.” Surgery 92:866–875, 1982.PubMedGoogle Scholar
  5. 5.
    Gohring U, Ziegler R, Buhr H. When should incidentalomas of the adrenal gland be surgically treated? Chirurg 61:304–307, 1990.PubMedGoogle Scholar
  6. 6.
    Goto K, Ogo A, Yanase T, Haji M, Ohashi M, Nawata H. Expression of c-fos and c-myc protooncogenes in human adrenal pheochromocytomas. J Clin Endocrinol Metab 70:353–357, 1990.PubMedGoogle Scholar
  7. 7.
    Gould VE, Wicdenmann B, Lee I, Schweckheimer K, Dockhorn-Dworniczak B, Radosevich JA, Moll R, Franke WW. Synaptophysin expression in neuroendocrine neoplasms as determined by immunocytochemistry. Am J Pathol 126:243–257, 1987.PubMedGoogle Scholar
  8. 8.
    Han VKM, D’Ercole AJ, Lund PK. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 236:193–197, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Haselbacher GK, Irminger JC, Zapf J, Ziegler WH, Humbel RE. Insulin-like growth factor II in human adrenal pheochromocytomas and Wilm’s tumors: expression at the mRNA and protein level. Proc Natl Acad Sci USA 84:1104–1106, 1987.PubMedCrossRefGoogle Scholar
  10. 10.
    Höppner JW, Steenbergh PH, Moonen PJ, Wagenaar SS, Jansz HS, Lips CJ. Detection of mRNA encoding calcitonin, calcitonin generelated peptide and proopiomelanocortin in human tumors. Mol Cell Endocrinol 47:125–130, 1986.CrossRefGoogle Scholar
  11. 11.
    Irminger JC, Rosen KM, Humbel RE, Villa-Komaroff L. Tissue specific expression of insulin-like growth factor II mRNAs with distinct 5’ untranslated regions. Proc Natl Acad Sci USA 84:6330–6334, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Kawano M, Kodama T, Ito Y, Obara T, Fujimoto Y. Adrenal incidentaloma—report of 14 operated cases and analysis of 4-year autopsy series of Japan. Nippon Ganka Gakkai Zasshi 90:2031–2036, 1989.Google Scholar
  13. 13.
    Kimura N. Mechanism of hormone production in neuroblastoma—detection of VIP messenger RNA by in situ hybridization (in Japanese). J Clin Exp Med 53:26–30, 1990.Google Scholar
  14. 14.
    Kimura N, Miura Y, Miura K, Takahashi N, Osamura RY, Nagatsu I, Nagura H. Adrenal and retroperitoneal mixed neuroendocrine and neural tumors. Endocr Pathol (in press).Google Scholar
  15. 15.
    Kimura N, Nakazato Y, Nagura H, Sasano N. Expression of intermediate filaments in neuroendocrine tumors. Arch Pathol Lab Med 114:506–510, 1990.PubMedGoogle Scholar
  16. 16.
    Kimura N, Sasano N, Miura Y, Kobayashi K. Adrenal and extra-adrenal pheochromocytomas: an ultrastructural and formaldehyde fluorescence study with catecholamine content. Tohoku J Exp Med 142:1–14, 1984.PubMedCrossRefGoogle Scholar
  17. 17.
    Kimura N, Sasano N, Namiki N, Nakazato Y. Coexpression of cytokeratin, neurofilament and vimentin in carcinoid tumors. Virchows Arch [Pathol Anat] 415:69–77, 1989.CrossRefGoogle Scholar
  18. 18.
    Kimura N, Sasano N, Yamada R, Satoh J. Immunohistochemical study of chromogranin in 100 cases of pheochromocytoma, carotid body tumor, medullary thyroid carcinoma and carcinoid tumor. Virchows Arch [Pathol Anat] 413:3–10, 1988.CrossRefGoogle Scholar
  19. 19.
    Kimura N, YamamotoH, Okamoto H, Gotoh K, Sone M, Mouri T, Ohta K, Kimura T, Ohzeki T, Miura Y. Detection of multiple hormones and their mRNAs in human neuroblastoma cell line NB-1 using in situ hybridization, immunocytochemistry and radioimmunoassay. Submitted.Google Scholar
  20. 20.
    Kimura N, Yamamoto H, Okamoto H, Wakasa H, Nagura H. Multiple hormone production in ganglioneuroblastoma with WDHA syndrome: detection of mRNA using in situ hybridization method (in Japanese). Proc Jpn Cancer Assoc 49:275, 1990.Google Scholar
  21. 21.
    Kruijer W, Schubert D, Verma IM. Induction of the proto-oncogene fos by nerve growth factor. Proc Natl Acad Sci USA 82:7330–7334, 1985.PubMedCrossRefGoogle Scholar
  22. 22.
    Lloyd RV, Iacangelo A, Eiden LE, Cano M, Jin L, Grimes M. Chromogranin A and B messenger ribonucleic acids in pituitary and other normal and neoplastic human endocrine tissues. Lab Invest 60:548–555, 1989.PubMedGoogle Scholar
  23. 23.
    Lloyd RV, Sisson JC, Schapiro B, Verhofstad AAJ. Immunohistochemical localization of epinephrine, norepinephrine, catecholaminesynthesizing enzymes, and chromogranin in neuroendocrine cells and tumors. Am J Pathol 125:45–54, 1986.PubMedGoogle Scholar
  24. 24.
    Long RG, Bryant MG, Mitchell SJ, Adrian TE, Polak JM, Bloom SR. Clinicopathological study of pancreatic and ganglioneuroblastoma tumors secreting vasoactive intestinal polypeptide (vipomas). Br Med J 282:1767–1771, 1981.Google Scholar
  25. 25.
    Mathew CGP, Chin KS, Easton DF, Thorpe K, Carter C, Liou GI, Fong S-L, Bridges CDB, Haak H, Nieuwenhuijzen-Kruseman AC, Shifter S, Hansen HH, Telenius H, Telenius-Berg M, Ponder BAJ. A linked genetic marker for multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 328:527–528, 1987.PubMedCrossRefGoogle Scholar
  26. 26.
    Mathew CGP, Smith BA, Thorpe K, Wong Z, Royle NJ, Jeffreys AJ, Ponder BAJ. Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 328:524–526, 1987.PubMedCrossRefGoogle Scholar
  27. 27.
    Milbrandt J. Nerve growth factor rapidly induces c-fos mRNA in PC-12 rat pheochromocytoma cells. Proc Natl Acad Sci USA 83:4789–4793, 1986.PubMedCrossRefGoogle Scholar
  28. 28.
    Molenaar WM, Baker DL, Pleasure D, Lee VM-Y, Trojanowski JQ. The neuroendocrine and neural profiles of neuroblastomas, ganglioneuroblastomas and ganglioneuromas. Am J Pathol 136:375–382, 1990.PubMedGoogle Scholar
  29. 29.
    Mukai M, Torikata C, Iri H, Morikawa Y, Shimizu K, Shimoda T, Nukina N, Isehara Y, Kageyama K. Expression of neurofilament triplet proteins in human neural tumors. An immunohistochemical study of paraganglioma, ganglioneuroma, ganglioneuroblastoma and neuroblastoma. Am J Pathol 122:28–35, 1986.PubMedGoogle Scholar
  30. 30.
    Nakagawara A, Ikeda K, Tsuda T, Okabe T. Amplification of N-myc oncogene in stage II and IVs neuroblastoma may be a prognostic indicator. J Pediatr Surg 22:415–418, 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Nakamura Y, Larsson C, Julier C, Byström C, Skogseid B, Wells S, Öberg K, Carlson M, Taggart T, O’Connell P, Leppert M, Lalouel J-M, Nordenskjöld M, White R. Localization of the genetic defect in multiple endocrine neoplasia type 1 with a small region of chromosome 11. Am J Hum Genet 44:751–755, 1989.PubMedGoogle Scholar
  32. 32.
    Ohsawa K, Hayakawa Y, Nishizawa M, Yamagami T, Yamamoto H, Yanaihara N, Okamoto H. Synergistic stimulation of VIP/ PHM-27 gene expression by cyclic AMP and phorbol esters in human neuroblastoma cells. Biochem Biophys Res Commun 132:885–891, 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Prasad KN. Differentiation of neuroblastoma cells in culture. Biol Rev 50:129–165, 1975.PubMedCrossRefGoogle Scholar
  34. 34.
    Reynolds RK, Hoekzema GS, Vogel J, Hinrichs SH, Jay G. Multiple endocrine neoplasia induced by the promiscuous expression of a viral oncogene. Proc Natl Acad Sci USA 85:3135–3139, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    Sano T, Saito H. Peptide hormones in pheochromocytoma. In: Lechago J, Kameya T, eds. Endocrine pathology update. New York: Field & Wood, 1990, pp 119–131.Google Scholar
  36. 36.
    Satoh T, Nakamura S, Taga T, Matsuda T, Hirano T, Kishimoto T, Kaziro Y. Induction of neuronal differentiation in PC 12 cells by B-cell stimulatory factor 21 interleukin 6. Mol Cell Biol 8:3546–3549, 1988.PubMedGoogle Scholar
  37. 37.
    Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313: lll1–1116, 1985.Google Scholar
  38. 38.
    Sharp GA, Shaw G, Weber K. Immunoelectron microscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurons. Exp Cell Res 137:403–413, 1982.PubMedCrossRefGoogle Scholar
  39. 39.
    Simpson NE, Kidd K, Goodfellow P, McDermid H, Myers S, Kidd J, Jackson C, Duncan A, Farrer L, Brasch K, Castiglione C, Genel M, Gertner J, Greenberg C, Gusella J, Holden J, White B. Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 328:528–530, 1987.PubMedCrossRefGoogle Scholar
  40. 40.
    Sisson JC, Frager MS, Volk TW, Gross MD, Swanson DP, Wieland DM, Tobes MC, Beierwaltes WH, Thompson NW. Scintigraphic localization of pheochromocytoma. N Engl J Med 305:12–17, 1981.PubMedGoogle Scholar
  41. 41.
    Suda T, Tornori N, Tozawa F, Demura H, Shizume K, Mouri T, Miuna Y, Sasano N. Immunoreactive corticotropin and corticotropin-releasing factor in human hypothalamus, adrenal, lung cancer, and pheochromocytoma. J Clin Endocrinol Metab 58:919–923, 1984.PubMedCrossRefGoogle Scholar
  42. 42.
    Sutton H, Wyeth P, Allen AP, Thurtle OA, Hames TK, Cawley MID, Ackery D. Disseminated malignant pheochromocytoma: localization with iodine-131-labeled metaiodobenzylguanidine. Br Med J 285:1153–1154, 1982.Google Scholar
  43. 43.
    Suzuki T. Production of peptide hormone by human neuroblastoma cell lines. In: Sawaguchi S, ed. Neureblastoma: recent advances in Japan. Japanese Ministry of Health & Welfare, 1980.Google Scholar
  44. 44.
    Suzuki T, Iwafuchi M, Yanaihara C, Hatanaka H, Tao Z, Yanaihara N, Tanaka H, Nishikawa K. IGF-II-like immunoreactivity in human tissues, neuroendocrine tumors, and PC 12 cells. Diabetes Res Clin Pract 7:S21–27, 1989.PubMedCrossRefGoogle Scholar
  45. 45.
    Takai S, Tateishi H, Nishisho I, Miki T, Motomura K, Miyauchi A, Kato M, Okazaki M, Yamamoto M, Honjo T, Kumahara Y, Mori T. Loss of genes on chromosome 22 in medullary thyroid carcinoma and pheochromocytoma. Jpn J Cancer Res (Gann) 78:894–898, 1987.Google Scholar
  46. 46.
    Tsuda T, Obara M, Hirano H, Gotoh S, Kubomura S, Higashi K, Kuroiwa A, Nakagawara A, Nagahara N, Simizu K. Analysis of N-myc amplification in relation to disease stage and histologic types in human neuroblastomas. Cancer 60:820–826, 1987.PubMedCrossRefGoogle Scholar
  47. 47.
    Tsuda H, Shimosato Y, Upton MP, Yokota J, Terada M, Ohira M, Sugimura T, Hirohashi S. Retrospective study on amplification of N-myc and c-myc genes in pediatric solid tumors and its association with prognosis and tumor differentiation. Lab Invest 59:321–327, 1988.PubMedGoogle Scholar
  48. 48.
    Varndell IM, Polak JM, Sikri KL, Minth CD, Bloom SR, Dixon JE. Visualization of messenger RNA directing peptide synthesis by in situ hybridization using a novel single-stranded cDNA probe: potential for the investigation of gene expression and endocrine cell activity. Histochemistry 81:597–601, 1984.PubMedCrossRefGoogle Scholar
  49. 49.
    Verhoffstad AAJ, Steinbusch HWM, Joosten HWJ, Penkc B, Varga J, Goldstein M. Immunocytochemical localization of noradrenalin, adrenalin and serotonin. In: Polak JM, Van Noorden S, eds. Immunocytochemistry: practical applications in pathology and biology. Bristol: Wright PSG, 1983, pp 143–168.Google Scholar
  50. 50.
    Viale GW, Dcll’orto P, Moro E, Cozzaglio L, Coggi G. Vasoactive intestinal polypeptide-, somatostatin-, and calcitonin-producing adrenal phcochromocytoma associated with the watery diarrhea (WDHA) syndrome. Cancer 55:1099–1106, 1985.PubMedCrossRefGoogle Scholar
  51. 51.
    Wiedenmann B, Huttner WB. Synaptophysin and chromogranins/secretogranins—widespread constituents of distinct types ot neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch [Cell Pathol] 58:95–121, 1989.CrossRefGoogle Scholar
  52. 52.
    Yanaihara N, Suzuki T, Sato H, Hoshino M, Okaru Y, Yanaihara C. Dibutyryl cAMP stimulation of production and release of VIP-like immunoreactivity in a human neuroblastoma cell line. Biomed Res 2:728–734, 1981.Google Scholar
  53. 53.
    Yiangou Y, Williams SJ, Bishop AE, Polak JM, Bloom SR. Peptide histidine-methionine immunoreactivity in plasma and tissue from patients with vasoactive intestinal peptidesecreting tumors and watery diarrhea syndrome. J Clin Endocrinol Metab 64:131–139, 1987.PubMedGoogle Scholar
  54. 54.
    Yoshioka M, Nagano I, Nakamura S, Imaizumi M, Kimura N. Detection of vasoactive intestinal polypeptide messenger RNA in ganglioneuroblastoma by in situ hybridization. Endocr Pathol 1:51–57, 1990.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Noriko Kimura
    • 1
  1. 1.Department of PathologyTohoku University School of MedicineSendaiJapan

Personalised recommendations