Metallurgical and Materials Transactions B

, Volume 27, Issue 1, pp 71–79 | Cite as

Influence of phosphorus addition on the surface tension of liquid iron and segregation of phosphorus on the surface of Fe-P alloy

  • X. M. Xue
  • H. G. Jiang
  • Z. T. Sui
  • B. Z. Ding
  • Z. Q. Hu
Physical Chemistry


This article presents a study of the surface tension and phosphorus surface segregation in Fe-P alloys. The surface tension was measured by the sessile drop technique. The result of the dynamic surface tension for the low phosphorus content alloys shows that the alloy surface vaporization has a clear effect on the surface tension and causes a positive surface tension temperature coefficient. However, from this article, it is evident that phosphorus in liquid iron acts as a surface active element similar to arsenic. The surface segregation was determined using Auger electron spectroscopy. The result on the surface analysis of as-solidified sample indicates that the adsorption of impurity elements, such as oxygen, carbon, and nitrogen, can conceal phosphorus segregation on the free surface. Phosphorus segregation was also examined in the samples as-cleaned by Ar+ and then treated 30 minutes at 650°C. Phosphorus was found to segregate extensively on the surface of the alloys. On the basis of the analysis of the published data, the surface active intensity sequence of some nonmetallic elements was arrayed, and the surface active intensity of fluorine and boron in liquid iron was estimated.


Surface Tension Material Transaction Phosphorus Content Auger Electron Spectroscopy Liquid Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.A. Halden and W.D. Kingery:J. Phys. Chem., 1955, vol. 59, pp. 557–59.CrossRefGoogle Scholar
  2. 2.
    A. Kasama, A. McLean, W.A. Miller, Z. Morita, and M.J. Ward:Can. Metall O., 1983, vol. 22, pp. 9–12.Google Scholar
  3. 3.
    B.J. Keene, K.C. Mills, T.W. Bryant, and E.D. Hondros:Can. Metall Q., 1982, vol. 21, pp. 393–98.Google Scholar
  4. 4.
    K. Ogino, K. Nogi, and O. Yamase:Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 234–39.Google Scholar
  5. 5.
    P. Sahoo and W. Murray Small:Scripta Metall Mater., 1990, vol. 24, pp. 645–48.CrossRefGoogle Scholar
  6. 6.
    J.T. Wang, R.A. Rarasev, and A.M. Samarin:Russ. Metall. Fuels, 1960, 1, pp. 21–25.Google Scholar
  7. 7.
    J.T. Wang, R.A. Rarasev, and A.M. Samarin:Russ. Metall Fuels, 1960, No. 2, pp. 49–52.Google Scholar
  8. 8.
    S.I. Popel, B.V. Tsareviskiy, V.V. Palov, and E.L. Furman:Russ. Metall, 1975, vol. 4, pp. 42–46.Google Scholar
  9. 9.
    C.H.P. Lupis:Chemical Thermodynamics of Materials, Elsevier Science Publishing Co., New York, NY, 1983.Google Scholar
  10. 10.
    B.J. Keene:Int. Mater. Rev. 1988, vol. 33, pp. 1–37.Google Scholar
  11. 11.
    Y.C. Guo and Z.X. Wang:Physics of Amorphous Alloys, Science Press. Beijing, 1984.Google Scholar
  12. 12.
    P. Kozakevitch and G. Urbain:Mem. Sci. Rev. Metall, 1961, vol. 58, pp. 931–47.Google Scholar
  13. 13.
    B.V. Tsareskii and S.I. Popel:Fiz. Met. Metall. 1962, vol. 13, pp. 451–54.Google Scholar
  14. 14.
    B.F. Dyson:Trans. TMS-AIME, 1963, vol. 227, pp. 1098–1103.Google Scholar
  15. 15.
    B.A. Baum, K.T. Kurochkin, and P.V. Umrikhin:Izv. Akad. Nauk SSSR Metall, 1961, No. 3, pp. 82–89.Google Scholar
  16. 16.
    W. vor dem Esche, and O. Peter:Arch. Eisenhuttenwes., 1956, vol. 27, pp. 355–66.Google Scholar
  17. 17.
    J.T. Wang, Q. Chen, Y.T. Yu, and G.S. Li:Acta Metall Sinica, 1985, vol. 21, pp. A477-A481.Google Scholar
  18. 18.
    K. Ogino and K. Nogi:J. Jpn. Inst. Met., 1979, vol. 43, pp. 871–76.Google Scholar
  19. 19.
    X.M. Xue and J.T. Wang:J. Non-Cryst. Solids, 1993, vols. 156–158, pp. 841–44.CrossRefGoogle Scholar
  20. 20.
    X.M. Xue, J.T. Wang, and Z.T. Sui:J. Mater. Sci., 1993, vol. 28, pp. 1317–22.CrossRefGoogle Scholar
  21. 21.
    P.P. Pugachevich and V.I. Yashkicheev:The Role of Surface Phenomena in Metallurgy, V.N. Eremenko, ed., Plenum Press, New York, NY, 1963, p. 46.Google Scholar
  22. 22.
    S.I. Popel, B.V. Tsarevskii, V.V. Pavlov, and E.L. Furman:Izv. Akad. Nauk SSSR Metall, 1975, No. 4, pp. 54–58.Google Scholar
  23. 23.
    B.J. Keene, K.C. Mill, and R.F. Brooks:Mater. Sci. Technol., 1985, vol. l,pp. 568–71.Google Scholar
  24. 24.
    H. Soda, A. McLean, and W.A. Miller:Metall Trans. B, 1978, vol. 9B, pp. 145–47.Google Scholar
  25. 25.
    O. Kubaschewski and C.B. Alcock:Metallurgical Thermochemistry, 5th Ed., Pergamon Press, New York, NY, 1979.Google Scholar
  26. 26.
    C.A. Croxton:Statistical Mechanics of the Liquid Surface, John Wiley and Sons, New York, NY, 1980.Google Scholar
  27. 27.
    K.M. Gupt, V.I. Yavoiski, A.F. Vishkaryov, and S.A. Bliznvkov:Trans. Ind. Inst. Met., 1976, vol. 29, pp. 286–90.Google Scholar
  28. 28.
    S.E. Vaisburd and G.N. Grigorev:Fiz. Khim. Poverkl. Rasp., Tbilisi, 1977 Colloquium on Physics and Chemistry of Surface Melts, 188–194, 1977, MetsniyerebaGoogle Scholar
  29. 29.
    J.F. Elliott: inElectric Furnase Steelmaking, Iron and Steel Society/ AIME, Warrendale, Pennsylvania 15086, USA, 1985, ch. 21.Google Scholar
  30. 30.
    A.K. Biswas:The Physical Chemistry of Metallurgical Presses, 1962.Google Scholar
  31. 31.
    E. Schurmann, H.-P. Kaiser, and U. Hensgen:Arch. Eisenhuttenwes., 1981, vol. 52, pp. 51–55.Google Scholar
  32. 32.
    A. Fernandes Guillermet, M. Hillert, B. Jansson, and B. Sundman:Metall. Trans. B, 1981, vol. 12B, pp. 745–54.CrossRefGoogle Scholar
  33. 33.
    H. Erhart and H.J. Grabke:Met. Sci., 1981, vol. 15, pp. 401–08.CrossRefGoogle Scholar
  34. 34.
    E.A. Guggenheim:J. Chem. Phys., 1945, vol. 13, pp. 253–61.CrossRefGoogle Scholar
  35. 35.
    J.T. Wang, M.S. Bian, and L.M. Ma:Acta Metall Sinica, 1986, vol. 22, pp. A270-A274.Google Scholar
  36. 36.
    P. Kozakvitch and G. Urbain:Mem. Sci. Rev. Metall, 1961, vol. 58, pp. 517–34.Google Scholar
  37. 37.
    G.D. Molonov and P.S. Kharlashin:Izv. VUZ Chrnaya Metall, 1977, No. 3, pp. 14–17.Google Scholar
  38. 38.
    E.S. Levin, P.V. Gel’d, and B.A. Baum:Russ. J. Phys. Chem., 1966, vol. 40, pp. 1455–58.Google Scholar
  39. 39.
    A.R. Miedema and R. Boom:Z. Metallkd., 1978, vol. 69, pp. 183–90.Google Scholar
  40. 40.
    T. Iida, A. Kasama, M. Misawe, and Z. Monta:J. Jpn. Inst. Met., 1974, vol. 38, pp. 177–81.Google Scholar
  41. 41.
    H.A. Papazian:High Temp. Sci., 1984, vol. 18, pp. 53–56.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1996

Authors and Affiliations

  • X. M. Xue
    • 1
  • H. G. Jiang
    • 2
  • Z. T. Sui
    • 3
  • B. Z. Ding
    • 2
  • Z. Q. Hu
    • 2
  1. 1.Department of Materials EngineeringThe University of Western OntarioLondonCanada
  2. 2.State Key Laboratory of RSA, Institute of Metal ResearchAcademia SinicaShenyangPeople’s Republic of China
  3. 3.Department of Non-Ferrous MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations