Metallurgical and Materials Transactions B

, Volume 27, Issue 1, pp 29–34 | Cite as

Prediction of liquid metal viscosities using an adjustable hard sphere radial distribution curve

  • Anthony L. Hines
  • Tsair-Wang Chung
Transport Phenomena


Predictions of liquid metal viscosities have been made using the Born-Green equation. The pair potential was calculated by the Percus-Yevick and hypernetted chain equations with the predicted structure factor and was used with the Mie-Gruneisen potential to make the calculations. Instead of using an experimentally determined radial distribution curve, however, an adjustable hard sphere radial distribution curve is employed to obtain the pair potential. The first peak of the hard sphere radial distribution curve used here was adjusted to represent the radial distribution curve at the melting point for any liquid metal. This was done by using the number of nearest neighbors and the distance to the first maximum in the radial distribution curve. This is possible because of the similarities in the radial distribution curves of liquid metals. A temperature correction is employed so that the viscosities can be calculated over a wide temperature range. The results are compared with literature values.


Material Transaction Liquid Metal Coordination Number Hard Sphere Radial Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Born and U. S. Green:Proc. R. Soc. A, 1947, vol. 190, p. 455.CrossRefGoogle Scholar
  2. 2.
    J.H. Hildebrand:Proc. Phys. Soc., 1944, vol. 56, p. 17.CrossRefGoogle Scholar
  3. 3.
    J.H. Hildebrand and R.L. Scott:The Solubility of Nonelectrolytes, Dover Publications, New York. NY, 1964.Google Scholar
  4. 4.
    C. Gamertsfelder:J. Chem. Phys., 1941, vol. 9, p. 450.CrossRefGoogle Scholar
  5. 5.
    N.S. Gingrich and L. Heaton:J. Chem. Phys., 1961, vol. 34, p. 873.CrossRefGoogle Scholar
  6. 6.
    A. Paskin:The Properties of Liquid Metals, Proc. Int. Conf., Brookhaven, 1961, p. 223.Google Scholar
  7. 7.
    R.M. Waghorne, V.G. Rivlin, and G.I. Williams:The Properties of Liquid Metals, Proc. Int. Conf., Brookhaven, 1966. p. 215.Google Scholar
  8. 8.
    A.L. Hines and H.A. Walls:Metall. Trans. A, 1979, vol. 10, pp. 1365–70.CrossRefGoogle Scholar
  9. 9.
    J.D. Bernai:Nature, 1959, vol. 183, p. 141.CrossRefGoogle Scholar
  10. 10.
    J.D. Bernai:Proc. R. Soc., 1964, vol. 280A, p. 299.Google Scholar
  11. 11.
    J.D. Bernai and J.L. Finney:Faraday Soc., 1967, vol. 43, p. 62.CrossRefGoogle Scholar
  12. 12.
    J.D. Bernai and J. Mason:Nature, 1960, vol. 188 p. 910.CrossRefGoogle Scholar
  13. 13.
    G.D. Scott:Nature, 1960, vol. 188, p. 908; 1962, vol. 194, p. 956.CrossRefGoogle Scholar
  14. 14.
    G.D. Mason:Nature, 1968, vol. 217, p. 733.CrossRefGoogle Scholar
  15. 15.
    L.D. Norman and E.E. Maust: U.S. Bureau of Mines Bull. 658, U.S. Government Printing Office, Washington, DC, 1971.Google Scholar
  16. 16.
    A.L. Hines: Ph.D. Dissertation, University of Texas at Austin, Austin, TX, 1973.Google Scholar
  17. 17.
    P.G. Mikolaj and C.J. Pings:Phys. Chem. Liq., 1968, vol. 1, p. 93.CrossRefGoogle Scholar
  18. 18.
    R.A. Swalin:Acta. Metall., 1959, vol. 7, p. 736.CrossRefGoogle Scholar
  19. 19.
    A.L. Hines, H.A. Walls, and K.R. Jethani:Metall. Trans., 1985, vol. 16A, pp. 267–74.Google Scholar
  20. 20.
    J.R. Wilson:Metall. Rev., 1965, vol. 10(40), p. 538.Google Scholar
  21. 21.
    I.Z. Fisher:Statistical Theory of Liquids, University of Chicago Press. Chicago, IL, 1964, p. 287.Google Scholar
  22. 22.
    J.K. Percus and G.J. Yevick:Phys. Rev., 1958, vol. 110, p. 1.CrossRefGoogle Scholar
  23. 23.
    J.M. Van Leeuwen. J. Groeneveld, and J. de Boer:Phvsica. 1959, vol. 25, p. 792.Google Scholar
  24. 24.
    D.I. Paskin and A. Rahman:Phys. Rev. Lett., 1966, vol. 16, p. 300.CrossRefGoogle Scholar
  25. 25.
    M.S. Duesbery and R. Taylor:Phys. Lett., 1969, vol. 30A, p. 496.Google Scholar
  26. 26.
    M.D. Johnson, P. Hutchinson, and N. March:Proc. R. Soc., 1964, vol. 282A, p. 283.Google Scholar
  27. 27.
    A.J. Greenfield, J. Wellendorf, and N. Wiser:Phys. Rev., 1971. vol. 4A, p. 1067.Google Scholar
  28. 28.
    M.F. Culpin:Proc. Phys. Soc., 1957, vol. 70B, p. 1069.Google Scholar
  29. 29.
    E.N. da C. Andrade and R.E. Dobbs:Proc. R. Soc. 1952, vol. 211A, p. 12.Google Scholar
  30. 30.
    C.T. Ewing, J.A. Grand, and R.R. Miller:J. Am. Chem. Soc., 1951, vol. 73, p. 1168.CrossRefGoogle Scholar
  31. 31.
    E. Gebhardt and G. Worwag:Z. Metallkd., 1951, vol. 42, p. 358.Google Scholar
  32. 32.
    E. Rothwell:J. Inst. Met, 1961–62, vol. 90, p. 389.Google Scholar
  33. 33.
    A.F. Crawley:Trans. TMS-AIME, 1968, vol. 242, p. 2309.Google Scholar
  34. 34.
    D. Ofte and L.J. Wittenberg:Trans. TMS-AIME, 1963, vol. 227, p. 706.Google Scholar
  35. 35.
    A. Bienias and F. Sauerwald:Z. Anorg. Chem., 1927, vol. 161, p. 51.CrossRefGoogle Scholar
  36. 36.
    P.M. Kampmeyer:J. Appl. Phys., 1952, vol. 23, p. 99.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1996

Authors and Affiliations

  • Anthony L. Hines
    • 1
  • Tsair-Wang Chung
    • 2
  1. 1.Honda of America Manufacturing, Inc.Marysville
  2. 2.University of Missouri-ColumbiaColumbia

Personalised recommendations