Skip to main content
Log in

Prediction of liquid metal viscosities using an adjustable hard sphere radial distribution curve

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Predictions of liquid metal viscosities have been made using the Born-Green equation. The pair potential was calculated by the Percus-Yevick and hypernetted chain equations with the predicted structure factor and was used with the Mie-Gruneisen potential to make the calculations. Instead of using an experimentally determined radial distribution curve, however, an adjustable hard sphere radial distribution curve is employed to obtain the pair potential. The first peak of the hard sphere radial distribution curve used here was adjusted to represent the radial distribution curve at the melting point for any liquid metal. This was done by using the number of nearest neighbors and the distance to the first maximum in the radial distribution curve. This is possible because of the similarities in the radial distribution curves of liquid metals. A temperature correction is employed so that the viscosities can be calculated over a wide temperature range. The results are compared with literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and U. S. Green:Proc. R. Soc. A, 1947, vol. 190, p. 455.

    Article  CAS  Google Scholar 

  2. J.H. Hildebrand:Proc. Phys. Soc., 1944, vol. 56, p. 17.

    Article  Google Scholar 

  3. J.H. Hildebrand and R.L. Scott:The Solubility of Nonelectrolytes, Dover Publications, New York. NY, 1964.

    Google Scholar 

  4. C. Gamertsfelder:J. Chem. Phys., 1941, vol. 9, p. 450.

    Article  CAS  Google Scholar 

  5. N.S. Gingrich and L. Heaton:J. Chem. Phys., 1961, vol. 34, p. 873.

    Article  CAS  Google Scholar 

  6. A. Paskin:The Properties of Liquid Metals, Proc. Int. Conf., Brookhaven, 1961, p. 223.

  7. R.M. Waghorne, V.G. Rivlin, and G.I. Williams:The Properties of Liquid Metals, Proc. Int. Conf., Brookhaven, 1966. p. 215.

  8. A.L. Hines and H.A. Walls:Metall. Trans. A, 1979, vol. 10, pp. 1365–70.

    Article  Google Scholar 

  9. J.D. Bernai:Nature, 1959, vol. 183, p. 141.

    Article  Google Scholar 

  10. J.D. Bernai:Proc. R. Soc., 1964, vol. 280A, p. 299.

    Google Scholar 

  11. J.D. Bernai and J.L. Finney:Faraday Soc., 1967, vol. 43, p. 62.

    Article  Google Scholar 

  12. J.D. Bernai and J. Mason:Nature, 1960, vol. 188 p. 910.

    Article  Google Scholar 

  13. G.D. Scott:Nature, 1960, vol. 188, p. 908; 1962, vol. 194, p. 956.

    Article  Google Scholar 

  14. G.D. Mason:Nature, 1968, vol. 217, p. 733.

    Article  Google Scholar 

  15. L.D. Norman and E.E. Maust: U.S. Bureau of Mines Bull. 658, U.S. Government Printing Office, Washington, DC, 1971.

    Google Scholar 

  16. A.L. Hines: Ph.D. Dissertation, University of Texas at Austin, Austin, TX, 1973.

    Google Scholar 

  17. P.G. Mikolaj and C.J. Pings:Phys. Chem. Liq., 1968, vol. 1, p. 93.

    Article  CAS  Google Scholar 

  18. R.A. Swalin:Acta. Metall., 1959, vol. 7, p. 736.

    Article  CAS  Google Scholar 

  19. A.L. Hines, H.A. Walls, and K.R. Jethani:Metall. Trans., 1985, vol. 16A, pp. 267–74.

    CAS  Google Scholar 

  20. J.R. Wilson:Metall. Rev., 1965, vol. 10(40), p. 538.

    Google Scholar 

  21. I.Z. Fisher:Statistical Theory of Liquids, University of Chicago Press. Chicago, IL, 1964, p. 287.

    Google Scholar 

  22. J.K. Percus and G.J. Yevick:Phys. Rev., 1958, vol. 110, p. 1.

    Article  CAS  Google Scholar 

  23. J.M. Van Leeuwen. J. Groeneveld, and J. de Boer:Phvsica. 1959, vol. 25, p. 792.

    Google Scholar 

  24. D.I. Paskin and A. Rahman:Phys. Rev. Lett., 1966, vol. 16, p. 300.

    Article  CAS  Google Scholar 

  25. M.S. Duesbery and R. Taylor:Phys. Lett., 1969, vol. 30A, p. 496.

    Google Scholar 

  26. M.D. Johnson, P. Hutchinson, and N. March:Proc. R. Soc., 1964, vol. 282A, p. 283.

    Google Scholar 

  27. A.J. Greenfield, J. Wellendorf, and N. Wiser:Phys. Rev., 1971. vol. 4A, p. 1067.

    Google Scholar 

  28. M.F. Culpin:Proc. Phys. Soc., 1957, vol. 70B, p. 1069.

    Google Scholar 

  29. E.N. da C. Andrade and R.E. Dobbs:Proc. R. Soc. 1952, vol. 211A, p. 12.

    Google Scholar 

  30. C.T. Ewing, J.A. Grand, and R.R. Miller:J. Am. Chem. Soc., 1951, vol. 73, p. 1168.

    Article  CAS  Google Scholar 

  31. E. Gebhardt and G. Worwag:Z. Metallkd., 1951, vol. 42, p. 358.

    CAS  Google Scholar 

  32. E. Rothwell:J. Inst. Met, 1961–62, vol. 90, p. 389.

    Google Scholar 

  33. A.F. Crawley:Trans. TMS-AIME, 1968, vol. 242, p. 2309.

    CAS  Google Scholar 

  34. D. Ofte and L.J. Wittenberg:Trans. TMS-AIME, 1963, vol. 227, p. 706.

    CAS  Google Scholar 

  35. A. Bienias and F. Sauerwald:Z. Anorg. Chem., 1927, vol. 161, p. 51.

    Article  CAS  Google Scholar 

  36. P.M. Kampmeyer:J. Appl. Phys., 1952, vol. 23, p. 99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hines, A.L., Chung, TW. Prediction of liquid metal viscosities using an adjustable hard sphere radial distribution curve. Metall Mater Trans B 27, 29–34 (1996). https://doi.org/10.1007/BF02915073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915073

Keywords

Navigation