Metallurgical and Materials Transactions B

, Volume 27, Issue 2, pp 195–201 | Cite as

A multiphase fluid mechanics approach to gas holdup in bath smelting processes

  • H. Gou
  • G. A. Irons
  • W. -K. Lu
Transport Phenomena


In slag-based, smelting-reduction processes, the overflow of slag from the vessel is considered a major limitation to productivity; this phenomenon is commonly called slag foaming. While much has been learned from laboratory-scale studies of foaming, the superficial gas velocities are well below those encountered in production (centimeters per second compared to meters per second). A multiphase fluid dynamic model was developed to determine the relationship between gas velocity and void fraction (holdup) at industrial production rates. In the model, the drag between the gas and slag is balanced against the weight of the slag. Within the framework of the model, the only unknown quantity is a drag factor which can be extracted from experimental data. Values of this factor from water models, smelting-reduction converters, and other slag systems fall in a narrow range. The model can be used to estimate slag height in smelting-reduction vessels. The behavior of slags at high rates of gas injection is markedly different from foaming observed at low flow rates.


Foam Material Transaction Void Fraction Superficial Velocity Slag Layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Saito:Proc. Savard/Lee Int. Symp. on Bath Smelting, TMS, Montreal, 1992, pp. 579–90.Google Scholar
  2. 2.
    E. Aukrust:Proc. Savard/Lee Int. Symp. on Bath Smelting, TMS, Montreal, 1992, pp. 591–610.Google Scholar
  3. 3.
    T. Ibaraki, M. Kanemoto, S. Ogawa, H. Katayama, and H. Ishikawa:I&SM, 1990, Dec, pp. 30–37.Google Scholar
  4. 4.
    M. Tokuda and S. Kobayashi:Proc. 7th Process Technology Conf., ISS-AIME, Toronto, 1988, pp. 3–11.Google Scholar
  5. 5.
    S. Hara and K. Ogino:Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 81–86.Google Scholar
  6. 6.
    Y. Ogawa, H. Katayama, H. Hirata, N. Tokumitsu, and M. Yamauchi:Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 87–94.Google Scholar
  7. 7.
    R. Jiang and R.J. Fruehan:Metall. Trans. B, 1991, vol. 22B, pp. 481–89.CrossRefGoogle Scholar
  8. 8.
    K. Ito and R.J. Fruehan:Proc. 7th Process Technology Conf., ISS-AIME, Toronto, 1988, pp. 13–21.Google Scholar
  9. 9.
    K. Ito and R.J. Fruehan:Metall. Trans. B, 1989, vol. 20B, pp. 509–21.CrossRefGoogle Scholar
  10. 10.
    M. Zamalloa and T. Utigard: Paper presented at75th Steelmaking Conf., ISS-AIME, Toronto, 1992.Google Scholar
  11. 11.
    J.K. Yoon and M.K. Shin:Proc. Int. Conf. on New Smelting Reduction and Near-Wet-Shape Casting Technologies for Steel, Pohang, Korea, 1990. pp. 97–106.Google Scholar
  12. 12.
    S. Kitamura and K. Okohira:Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 741–46.Google Scholar
  13. 13.
    Y. Ogawa and N. Tokumitsu:Proc. 6th Int. Iron and Steel Congr., Iron and Steel Institute of Japan, Nagaya, 1990, pp. 147–52.Google Scholar
  14. 14.
    Y. Ogawa, D. Huin, H. Gaye, and N. Tokumitsu:Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 224–32.Google Scholar
  15. 15.
    H. Hirata, A. Matsuo, H. Katayama, H. Ishikawa, and H. Kajioka:CAMP-ISIJ, 1989, vol. 2, p. 172.Google Scholar
  16. 16.
    N. Tokumitsu, M. Matsuo, H. Katayama, H. Ishikawa, Y. Takamoto, and Y. Hayashi:Proc. 7th Process Technology Conf., ISS-AIME, Toronto, 1988, pp. 99–107.Google Scholar
  17. 17.
    G.B. Wallis:Proc. Symp. on Interactions between Fluids and Particles, Institute of Chemical Engineers, London, 1962, vol. 9, pp. 9–16.Google Scholar
  18. 18.
    Z. Lin and R. Guthrie:Trans. ISS, 1995, May, pp. 67–73.Google Scholar
  19. 19.
    R. Frank, R. Selines, and Z. Du: Praxair Inc., Tarrytown, NY, unpublished research, 1990.Google Scholar
  20. 20.
    G.F. Hewitt:Handbook of Multiphase Systems, G. Hetsroni. ed. McGraw-Hill, New York. NY, 1982, pp. 2–15.Google Scholar
  21. 21.
    Y.T. Shah, B.G. Kelkar, S.P. Godbole, and W.D. Dcckwer:AIChEJ., 1982, vol. 28 (3), pp. 353–79.CrossRefGoogle Scholar
  22. 22.
    K. Akita and F. Yoshida:Ind. Eng. Chem. Proc. Des. Dev., 1973, vol. 21, p. 76.CrossRefGoogle Scholar
  23. 23.
    H. Hikita, S. Asai, K. Tanigawa, K. Segawa, and M. Kitao:Chem. Eng. J., 1980, vol. 20, p. 20.Google Scholar
  24. 24.
    P. Kozakevitch:J Met., 1969, July, pp. 57–68.Google Scholar
  25. 25.
    G.A. Irons:Ironmaking Steelmaking, 1988, vol. 16, pp. 28–36.Google Scholar
  26. 26.
    L.R. Farias and G.A. Irons:Metall. Trans. B, 1986, vol. 17B, pp. 77–85.CrossRefGoogle Scholar
  27. 27.
    G.S. Hanumanth, G.A. Irons, and S. Lafreniere:Metall. Trans. B, 1992, vol. 23B, pp. 753–63.CrossRefGoogle Scholar
  28. 28.
    M. Schlichting, K. Downing, and E. Aukrust: AISI Direct Steelmaking, Pittsburgh, PA, unpublished research, 1991.Google Scholar
  29. 29.
    M.P. Fazleev, E.A. Ermakov, and O.S. Chekhov:J. Appl. Chem. USSR, 1985, vol. 58, pp. 32–37.Google Scholar
  30. 30.
    A.N. Khoze, Yu.I. Sharov, and Yu.V. O’Yachenko:Fluid Mech. Sov. Res., 1980, vol. 9, pp. 94–97.Google Scholar
  31. 31.
    F. Yoshita and K. Akita:AIChEJ., 1965, vol. 11, pp. 9–13.CrossRefGoogle Scholar
  32. 32.
    Y.Y. Sheng and G.A. Irons:Metall. Trans. B, 1993, vol. 24B, pp. 695–705.CrossRefGoogle Scholar
  33. 33.
    H. Katayama, T. Ibaraki, T. Ohno, M. Yamauchi, H. Hirata, and T. Inomoto:Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 124–32.Google Scholar
  34. 34.
    H. Katayama: Nippon Steel Corporation, Chiba, Japan, private communication, 1995.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1996

Authors and Affiliations

  • H. Gou
    • 1
  • G. A. Irons
    • 2
  • W. -K. Lu
    • 2
  1. 1.Hatch Associates Ltd.MississaugaCanada
  2. 2.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations