Advertisement

Metallurgical and Materials Transactions B

, Volume 27, Issue 3, pp 385–392 | Cite as

Oxidation-reduction equilibrium of Cu2+/Cu+ in binary alkaline sulfate melts

  • T. Yamamoto
  • N. Yamano-uchi
  • K. Masamura
  • M. Tamura
  • M. Iwase
Pyrometallurgy

Abstract

Oxidation-reduction equilibria for a Cu2+/Cu+ couple in binary alkaline sulfate melts, Li2SO4 + R2SO4 (R = Na, K, Rb, Cs), were determined at temperatures of 973, 1023, and 1073 K by equilibrating these melts with gas mixtures of Ar + O2 + SO2. RedOx equilibria are well interpreted by the average ionic radii of alkaline metals: r(average) = X(Li2SO4) r(Li) + X(R2SO4) r(R), wherer andX denote, respectively, mole fraction and the ionic radii of alkaline metal. The oxygen anion activities would increase with an increase in R2SO4 mole fractions of binary sulfates Li2SO4 + R2SO4.

Keywords

Material Transaction Oxygen Anion Li2SO4 RedOx Equilibrium Phase Stability Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Rapp: inThermodynamics of Alloys, H. Brodowsky and H.-J. Schaller, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1987, pp. 481–94.Google Scholar
  2. 2.
    R.A. Rapp: inMaterials Chemistry at High Temperatures, Vol. 2, J.W. Hastie, ed., Humana Press, Clifton, NJ, 1990, pp. 355–67.Google Scholar
  3. 3.
    R.A. Rapp:Corrosion, 1986, vol. 42, pp. 568–77.Google Scholar
  4. 4.
    D.K. Gupta and R.A. Rapp:J. Electrochem. Soc., 1980, vol. 127, pp. 2194–2201.CrossRefGoogle Scholar
  5. 5.
    Y.S. Zhang and R.A. Rapp:J. Electrochem. Soc., 1985, vol. 132, pp. 734–35.CrossRefGoogle Scholar
  6. 6.
    P.D. Jose, D.K. Gupta, and R.A. Rapp:J. Electrochem. Soc., 1985, vol. 132, pp. 735–37.CrossRefGoogle Scholar
  7. 7.
    Y.S. Zhang:J. Electrochem. Soc., 1986, vol. 133, pp. 655–57.CrossRefGoogle Scholar
  8. 8.
    E.T. Turkdogan:Physicochemical Properties of Molten Slags and Glasses, The Metals Society, London. 1983.Google Scholar
  9. 9.
    A. Paul:Chemistry of Glasses, 2nd ed., Chapman and Hall, London, 1990.Google Scholar
  10. 10.
    L. Pauling:The Nature of Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960, p. 514.Google Scholar
  11. 11.
    S. Nakamura and N. Sano:Metall. Trans. B, 1991. vol. 22B, pp. 823–30.CrossRefGoogle Scholar
  12. 12.
    S. Banerjee and A. Paul:J. Am. Ceram. Soc., 1974, vol. 57, pp. 286–90.CrossRefGoogle Scholar
  13. 13.
    O. Kubaschewski, C.B. Alcock, and P.J. Spencer:Metallurgical Thermochemistry 6th Edition, Pergamon Press, Elmsford, NY, 1993.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1996

Authors and Affiliations

  • T. Yamamoto
    • 1
  • N. Yamano-uchi
    • 2
  • K. Masamura
    • 2
  • M. Tamura
    • 2
  • M. Iwase
    • 1
  1. 1.Department of Energy Science and EngineeringKyoto UniversityKyotoJapan
  2. 2.Materials and Processing Research Center, NKKKawasakiJapan

Personalised recommendations