Advertisement

JOM

, Volume 49, Issue 10, pp 24–27 | Cite as

The freeway model: New concepts in understanding supercurrent transport in Bi-2223 tapes

  • G. N. Riley
  • A. P. Malozemoff
  • Q. Li
  • S. Fleshler
  • T. G. Holesinger
High-Temperature Superconductivity Overview

Abstract

A variety of mechanisms for supercurrent transport in (Bi, Pb)2 Sr2 Ca2 Cu3 Ox (Bi-2223) tapes have been proposed, including the brick-wall and railway-switch models and the more recent freeway model. In this article, these models are compared to a growing library of data, including structural and transport studies on specific grain boundary types as well as the systematics of microstructure and transport in the polycrystalline tapes, including new transmission electron microscopy data on some of the highest-performing samples yet fabricated. Additionally, the freeway model is developed, with the concepts of rotary junction bottlenecks corresponding to edge colony boundaries, of lane changes corresponding to c-axis redistribution within colonies, and on-ramps corresponding to tilted and bent grains.

Keywords

Lane Change Mosaic Spread Rent Flow Freeway Model Tape Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. Li et al.,IEEE Trans. Appl. Superconductivity, 7 (1997), p. 2026.CrossRefGoogle Scholar
  2. 2.
    J. Voccio et al.,IEEE Trans. Appl. Superconductivity, 7 (1997), p. 519.CrossRefGoogle Scholar
  3. 3.
    D. Buczek et al.,IEEE Trans. Appl. Superconductivity, 7 (1997), p. 2196.CrossRefGoogle Scholar
  4. 4.
    S. Kalsi et al., to be published.Google Scholar
  5. 5.
    S. Dale, “HTS Transformers Wire Requirements” (paper presented at DOE Wire Workshop, St. Petersburg, FL, 6–7 February 1997).Google Scholar
  6. 6.
    J. Tenbrink, K. Heine, and H. Krauth,Cryogenics, 30 (1990), p. 422.CrossRefGoogle Scholar
  7. 7.
    D. Dimos, P. Chaudhari, and J. Mannhart,Phys. Rev. B, 41 (1990), p. 4038.CrossRefGoogle Scholar
  8. 8.
    M. Kawasaki et al.,Appl. Phys. Lett., 62 (1993), p. 417.CrossRefGoogle Scholar
  9. 9.
    A.P. Malozemoff,High Temperature Superconducting Compounds II, ed. S.H. Whang et al. (Warrendale, PA: TMS, 1990), p. 3; also inSuperconductivity and its Applications, ed. Y.H. Kao et al. (New York: American Institute of Physics, 1992), p. 6.Google Scholar
  10. 10.
    L.N. Bulaevskii et al., Phys. Rev. B, 45 (1992), p. 2545; L.N. Bulaevskii et al.Phys. Rev. B, 84 (1993), p. 13798.CrossRefGoogle Scholar
  11. 11.
    Y. Feng et al.Appl. Phys. Lett. 62 (1993), p. 1553.CrossRefGoogle Scholar
  12. 12.
    Q. Li et al.Proc. of the 1997 International Workshop on Superconductivity Co-Sponsored by ISTEC and MRS (Pittsburgh, PA: MRS, 1997), p. 175.Google Scholar
  13. 13.
    Y.M. Zhu, M. Suenaga, and R.L. Sabatini,Appl. Phys. Lett., 65 (1994), p. 1832.CrossRefGoogle Scholar
  14. 14.
    D.P. Grindatto et al.Physica C, 271 (1996), p. 155.CrossRefGoogle Scholar
  15. 15.
    Y. Hu et al.J. Appl. Phys. 78, (1995), p. 1123.CrossRefGoogle Scholar
  16. 16.
    Q.Y. Hu et al.Physica C, 252 (1995), p. 211.CrossRefGoogle Scholar
  17. 17.
    J.O. Willis et al.Advances in Cryogenic Engineering, 40 ed. R.P. Reed et al. (New York: Plenum Press, 1994), p. 9.Google Scholar
  18. 18.
    B. Hensel, and J.-C. Grivel, et al.Physica C, 205 (1993), p. 329; B. Hensel, G. Grasso, and R. Fluekiger,Phys. Rev. B, 51 (1995), p. 15456.CrossRefGoogle Scholar
  19. 19.
    G.N. Riley, Jr., “Performance Improvements in HTS Composite Superconductors” (paper presented at Spring MRS Meeting, San Francisco, CA, April 1996).Google Scholar
  20. 20.
    A.P. Malozemoff et al., “Supercurrent Conduction Mechanisms in BSCCO-2223 Tapes” (Paper presented at SPA’97, Xian, China, 6–8 March, 1997), to be published.Google Scholar
  21. 21.
    E.D. Specht, A. Goyal, and D.M. Kroeger,Phys. Rev. B, 53 (1996), p. 3585.CrossRefGoogle Scholar
  22. 22.
    A. Goval et al.JOM 48 (10) (1996), p. 24.Google Scholar
  23. 23.
    J.L. Wang et al.J. Mater. Res., 11, (1996), p. 868.CrossRefGoogle Scholar
  24. 24.
    Q. Li et al.Appl. Phys. Lett., 70 (1997).Google Scholar
  25. 25.
    A. Pashitski et al.Physica C 246 (1995), p. 133.CrossRefGoogle Scholar
  26. 26.
    J.L. Wang et al.Physica C, 230 (1994), p. 189.CrossRefGoogle Scholar
  27. 27.
    Q. Li et al.IEEE Trans. Appl. Superconductivity, 7 (1997), p. 1584.CrossRefGoogle Scholar
  28. 28.
    M. McHenry private communication.Google Scholar
  29. 29.
    J.S. Luo et al.J. Appl. Phys., 72 (1992), p. 2385.CrossRefGoogle Scholar
  30. 30.
    Y.M. Zhu, private communication.Google Scholar
  31. 31.
    A. Umezawa et al.,Physica C, 219 (1994), p. 378.CrossRefGoogle Scholar
  32. 32.
    J.H. Cho et al.Appl. Phys. Lett., 64 (1994), p. 3030.CrossRefGoogle Scholar
  33. 33.
    Y. Yan et al.,Physica C, 261 (1996), p. 56.CrossRefGoogle Scholar
  34. 34.
    M. Dhalle, private communication.Google Scholar
  35. 35.
    Q. Li et al.Appl. Phys. Lett. 66 (1995), p. 637.CrossRefGoogle Scholar
  36. 36.
    Kleiner et al.Phys. Rev. B, 49 (1994), p. 1327.CrossRefGoogle Scholar
  37. 37.
    Cai et al., to be published.Google Scholar
  38. 38.
    Yamasaki et al.IEEE Trans. Appl. Sup., 3 (1993), p. 1536.CrossRefGoogle Scholar
  39. 39.
    E. Babcock et al.Nature 347 (1990), p. 167.CrossRefGoogle Scholar
  40. 40.
    M. Lelovic et al.Physica C, 242 (1995), p. 246.CrossRefGoogle Scholar
  41. 41.
    M. Lelovic et al.Supercond. Sci. Technol., 9 (1996), p. 201.CrossRefGoogle Scholar
  42. 42.
    M.P. Maley et al.Phys. Rev. B 45 (1992), p. 7566.CrossRefGoogle Scholar
  43. 43.
    S.-I. Kobayashi et al.Advances in Superconductivity VIII ed. H. Hayakawa and Y. Enomoto (Tokyo: springer-Verlag, 1996), p. 803.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 1997

Authors and Affiliations

  • G. N. Riley
  • A. P. Malozemoff
  • Q. Li
  • S. Fleshler
  • T. G. Holesinger

There are no affiliations available

Personalised recommendations