Advertisement

Endocrine Pathology

, Volume 4, Issue 2, pp 86–94 | Cite as

Corticotroph (Basophil) invasion of the pars nervosa in the human pituitary: Localization of proopiomelanocortin peptides, galanin and peptidylglycine α-amidating monooxygenase-like immunoreactivities

  • Ricardo V. Lloyd
  • Constance J. D’Amato
  • Michelle T. Thiny
  • Long Jin
  • Samuel P. Hicks
  • William F. Chandler
Original Article

Abstract

Corticotroph (basophil) invasion or the migration of corticotroph cells into the pars nervosa of the human pituitary gland was found in 35 of 767 (4.4%) consecutive pituitaries obtained at autopsy. The degree of invasion increased with patient age and extensive invasion was more common in men than in women. Immunoreactive ACTH, β-MSH, α-MSH, and galanin were detected both in the anterior lobe and invading corticotroph cells in approximately equal frequency. Fewer cells stained positively for α-MSH than for the three other peptides in both the anterior lobe and invading corticotrophs. Twelve corticotropic pituitary adenomas obtained surgically from patients with Cushing’s disease were also examined and expressed varying degrees of immunoreactivity for ACTH, α MSH, β-MSH and galanin. Staining for all major pituitary hormones revealed only ACTH in the invading basophil cells. Peptidylglycine α-amidating monooxygenase (PAM) was present in the anterior pituitary, in invading corticotroph cells, and in some cells lining the cysts of the pars intermedia zone. PAM immunoreactivity was also detected in 4/12 corticotroph adenomas. These results indicate that corticotroph cells invading the pars nervosa are immunohistochemically similar to anterior lobe corticotrophs and have the ability to amidate various peptides such as proopiomelanocortin cleavage products and galanin with PAM.

Keywords

Adenoma Pituitary Adenoma Anterior Lobe Endocrine Pathology Volume Intermediate Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benjannet S, Rondeau N, Day R, Chretien M, Seidah NG. PC1 and PC2 are proprotein covertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci USA 88:3564–3568, 1991.PubMedCrossRefGoogle Scholar
  2. 2.
    Braas KM, Harakall SA, Ouafik L, Eipper BA, May V. Expression of peptidylglycine α-amidating monooxygenase: an in situ hybridization and immunocytochemical study. Endocrinol 130:2778–2788, 1992.CrossRefGoogle Scholar
  3. 3.
    Braas KM, Stoffers DA, Eipper BA, May V. Tissue specific expression of rat peptidylglycine α-amidating monooxygenase activity and mRNA. Mol Endocrinol 3:1387–1398, 1989.PubMedGoogle Scholar
  4. 4.
    Coates PJ, Doniach I, Hale AC, Rees LH. The distribution of immunoreactive alphamelanocyte-stimulating hormones cells in the adult human pituitary gland. J Endocr 111:335–342, 1986.PubMedGoogle Scholar
  5. 5.
    Croughs RJ, Koppeschaar HP, Van’t Verlaat JW, McNicol AM. Bromocriptine-responsive Cushing’s disease associated with anterior pituitary corticotroph hyperplasia or normal pituitary gland. J Clin Endocrinol Metab 68:495–498, 1989.PubMedGoogle Scholar
  6. 6.
    Day RM, Schafer MK-H, Watson SJ, Chretien M, Seidah NG. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol Endocrinol 6:485–497, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Eipper BA, Mains RE. Structure and biosynthesis of proadenocorticotropin/endorphin and related peptides. Endocrine Rev 1:1–27, 1980.Google Scholar
  8. 8.
    Eipper BA, Stoffers DA, Mains RE. The biosynthesis of neuropeptides: peptide α-amidation. Annu Rev Neurosci 15:57–85, 1992.PubMedCrossRefGoogle Scholar
  9. 9.
    Grua JR, Nelson DH. ACTH-producing pituitary tumors. Endocrinol Metab Clin NA. 20:319–362, 1991.Google Scholar
  10. 10.
    Halmi NS, McCormick WF, Decker DA Jr. The natural history of hyalinization of ACTH-MSH cells in man. Arch Pathol 91:318–326, 1971.PubMedGoogle Scholar
  11. 11.
    Heinrichs M, Baumgartner W, Capen CC. Immunocytochemical demonstration of proopiomelanocortin-derived peptides in pituitary adenomas of the pars intermedia in horses. Vet Pathol 27:419–425, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Hsu DW, El-Azouzi M, Black PM, Chin WW, Hedley-Whyte ET, Kaplan LM. Estrogen increases galanin immunoreactivity in hyperplastic prolactin in secreting cells in Fischer 344 rats. Endocrinol 126:3159–3167, 1990.Google Scholar
  13. 13.
    Hsu DW, Tooi SC, Hedley-Whyte ET, Strauss RM, Kaplan LM. Co expression ot galanin and adrenocorticotropic hormone in human pituitary and pituitary adenomas. Am J Pathol 138:897–909, 1991.PubMedGoogle Scholar
  14. 14.
    Jin L, Stone M, Chandler WF, Lloyd RV. Neural cell adhesion molecule (NCAM) in normal and neoplastic human pituitary tissues: Analysis by immunohistochemistry and in situ hybridization. Endocr Pathol 3:144–151, 1992.Google Scholar
  15. 15.
    Kaplan LM, Gabriel SM, Koenig JI, Sunday ME, Spindel ER, Martin JB, Chin WW. Galanin is an estrogen-inducible, secretory product of the rat anterior pituitary. Proc Natl Acad Sci USA 85:7408–7412, 1988.PubMedCrossRefGoogle Scholar
  16. 16.
    Kovacs K, Horvath E. Tumors of the pituitary gland. In: Atlas of Tumor Pathology. Second series, fascicle 21. Washington DC, Armed Forces Institute of Pathology 1986. p 44.Google Scholar
  17. 17.
    Kovacs K, Horvath E, Baylcy TA, Hassaram ST, Ezrin C. Silent corticotroph cell adenoma with lysosomal accumulation and crinophagy. A distinct clinicopathologic entity. Am J Med 64:492–499, 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    Lamberts SW, de Lange SA, Stefanko SZ. Adrencorticotroph-secreting pituitary adenomas originate from the anterior on the intermediate lobe in Cushing’s disease: differences in the regulation of hormone secretion. J Clin Endocrinol Metab 54:286–291, 1982.PubMedGoogle Scholar
  19. 19.
    Lloyd RV, Chandler WF, McKeevcr PE, Schteingart DE. The spectrum of ACTHproducing pituitary lesions. Am J Surg Pathol 10:618–626, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Lloyd RV, Fields K, Jin L, Horvath E, Kovacs K. Analysis of endocrine active and clinically silent corticotroph adenomas by in situ hybridization. Am J Pathol 137:479–488, 1990.PubMedGoogle Scholar
  21. 21.
    Lloyd RV, Jin L, Fields K, Chandler WF, Horvath E, Stefaneau L, Kovacs K. Analysis of pituitary hormones and chromogranin A mRNAs in null cell adenomas, oncocytomas and gonadotroph adenomas by in situ hybridization. Am J Pathol 139:553–564, 1991.PubMedGoogle Scholar
  22. 22.
    May V, Ouafik L, Eipper BA, Braas KM. Immunocytochemical and in situ hybridization studies of peptidylglycine α-amidating monooxygenase in pituitary gland. Endocrinology 127:358–364, 1990.PubMedCrossRefGoogle Scholar
  23. 23.
    Nagaya T, Kuwayama A, Seo H, Tsukamoto N, Matsui N, Sugita K. Endocrinological evaluation of ACTH-secreting pituitary microadenomas: their location and α-melanocyte stimulating hormone immunoreactivity. J Neurosurg 76:944–947, 1992.PubMedGoogle Scholar
  24. 24.
    Nieuwenhuijzen Kruseman AC, Schrodervan der Elst JP. The immunolocalization of ACTH and α-MSH in human and rat pituitaries. Virchow Arch B Cell Pathol 22:263–272, 1976.Google Scholar
  25. 25.
    Osamura RY, Watanabe K. An immunohistochemical study of epithelial cells in the posterior lobe and pars tuberalis and the human adult pituitary gland. Cell Tissue Res 194:513–524, 1978.PubMedCrossRefGoogle Scholar
  26. 26.
    Osamura RY, Watanabe K, Nakai Y, Imura H. Adrenocorticotropic hormone cells and immunoreactive β-endorphin cells in the human pituitary gland: normal and pathologic conditions studied by the peroxidaselabeled antibody method. Am J Pathol 99:105–124, 1980.PubMedGoogle Scholar
  27. 27.
    Osamura RY, Watanabe K, Seidah NG, Chan JS, Chretien M. Light and electron microscopic localization of the N-terminal fragment of human proopiomelanocortin in the human pituitary gland and in neoplasms. Virchuw Arch [Pathol Anat] 408: 281–287, 1985.CrossRefGoogle Scholar
  28. 28.
    Osamura RY, Watanabe K, Tanaka I, Nakai Y, Imura H. Comparative immunohistochemical studies of gamma-melanocyte stimulating hormone (gamma-MSH) and adrenocorticotroph hormone (ACTH) in the bovine and human pituitaries. Acta Endocrinol 96:458–463, 1981.PubMedGoogle Scholar
  29. 29.
    Ouafik L’H, Staffers DA, Campbell TA, Johnson RC, Bloomquist BT, Mains RE, Eipper BA. The multifunctional peptidylglycine α-amidating monooxygenease gene: exon/intron organization of catalytic, processing and routing domains. Mol Endocrinol 6:1571–1584, 1992.PubMedCrossRefGoogle Scholar
  30. 30.
    Peterson ME, Orth DN, Halmi NS, Zielinski AC, Davis DR, Chavez FT, Drucker WD. Plasma immunoreactive proopiomelanocortin peptides and cortisol in normal dogs and dogs with Addison’s disease and Cushing’s Syndrome: basal concentrations. Endocrinology 119:720–730, 1986.PubMedGoogle Scholar
  31. 31.
    Phifer RF, Orth DN, Spicer SS. Specific demonstration of the human hypophyseal adrenocortico-melanotropic (ACTH/MSH) cell. J Clin Endocrinol Metab 39:684–692, 1974.PubMedCrossRefGoogle Scholar
  32. 32.
    Rasmussen AT, Nelson AA. Pars intemedia basophil adenoma of the hypophysis. Am J Pathol 14:297–315, 1938.PubMedGoogle Scholar
  33. 33.
    Sano T, Vrontakis ME, Kovacs K, Asa SL, Friesen HG. Galanin immunoreactivity in neuroendocrine tumors. Arch Pathol Lab Med 115:926–929, 1991.PubMedGoogle Scholar
  34. 34.
    Saeger W, Schroeder H. ACTH-Zellhyperplasien der Adeno-und der Neurohypo-physe und ihre Bezichungen zur arteriellen Hypertonie. Pathologe 6:141–148, 1985.PubMedGoogle Scholar
  35. 35.
    Sheehan HL, Kovacs K. Neurohypophysis and hypothalamus. In: Bloodworth J.M.B. (ed). Endocrine Pathology. General and Surgical 2nd ed. Baltimore—London. Williams and Wilkens, 3:45–100, 1982.Google Scholar
  36. 36.
    Song JY, Jin L, Chandler WF, England BG, Smart JB, Landefcld TD, Lloyd RV: Gonadotropin-releasing hormone regulates gonadotropin beta-subunit and chromogranin B mRNAs in cultured chromogranin A positive pituitary adenomas. J Clin Endocrinol Metab 71:622–630, 1990.PubMedGoogle Scholar
  37. 37.
    Vrontakis ME, Sano T, Kovacs K, Friesen HG. Presence ot galanin-like immunoreactivity in nontumorous corticotrophs and corticotroph adenomas of the human pituitary. J Clin Endocrinol Metab 70:745–751, 1990.Google Scholar

Copyright information

© Blackwell Scientific Publications, Inc. 1993

Authors and Affiliations

  • Ricardo V. Lloyd
    • 1
  • Constance J. D’Amato
    • 1
  • Michelle T. Thiny
    • 1
  • Long Jin
    • 1
  • Samuel P. Hicks
    • 1
  • William F. Chandler
    • 1
  1. 1.Department of Pathology and Surgery (Section of Neurosurgery)University of Michigan Medical CenterAnn Arbor

Personalised recommendations