, Volume 49, Issue 8, pp 50–54 | Cite as

Processing iron-aluminide composites containing carbides or borides

  • R. Subramanian
  • J. H. Schneibel
Iron Aluminides Overview


Iron-aluminide composites containing 30–90 vol. % carbides or borides can be processed to near full density (greater than 97% theoretical density). This wide range of ceramic contents enables the tailoring of the composite properties to a variety of applications requiring a combination of the corrosion and oxidation resistance of iron aluminides and the hardness and wear resistance of the ceramic phases. The composites are processed by conventional liquid-phase sintering of mixed powders as well as pressureless melt infiltration. Typical mechanical properties such as hardness, flexure strength, and fracture toughness were evaluated for composites containing different volume fractions of carbide or boride particulates. Furthermore, evaluations of the wear resistance, oxidation resistance, aqueous corrosion resistance, and thermal expansion of the iron-aluminide composites suggest many potential applications for these new materials.


Fracture Toughness Boride Flexure Strength Iron Aluminides Carbide Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Intermetallic Matrix Composites Symposium Proceedings, 194, ed. D.L. Anton et al. (Pittsburgh, PA: MRS, 1990).Google Scholar
  2. 2.
    T.N. Tiegs et al.Mat. Sci. and Engrg., A209 (1996), pp. 243–247.CrossRefGoogle Scholar
  3. 3.
    J.H. Schneibel et al.Intermetallics, 5 (1997), pp. 61–67.CrossRefGoogle Scholar
  4. 4.
    P.F. Tortorelli and J.H. DeVan,Processing, Properties and Applications of Iron Aluminides, ed. J.H. Schneibel and M.A. Crimp (Warrendale, PA: TMS, 1994), p. 257.Google Scholar
  5. 5.
    C.G. McKamey et al.J. Mater. Res., 6 (1991), p. 1779.CrossRefGoogle Scholar
  6. 6.
    J.H. DeVan,Oxidation of High-Temperature Intermetallies, ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1989), p. 107.Google Scholar
  7. 7.
    E.A. Almond and B. Roebuck,Mat. Sci. and Eng., A105/106 (1988), p. 237.CrossRefGoogle Scholar
  8. 8.
    R.K. Viswanadham and P.G. Lindquist:Met. Trans., 18A (1987), p. 2175.Google Scholar
  9. 9.
    A.M. Human and H.E. Exner,Mater. Sci. and Eng., A209 (1960), p. 180.CrossRefGoogle Scholar
  10. 10.
    J. Wambold,Cermes, ed. J.R. Tinklepaugh and W.B. Crandall (New York: Reinhold Publishing Corp., 1960) p. 122.Google Scholar
  11. 11.
    C.T. Liu, E.H. Lee, and C.G. McKamey,Scripta Metall., 23 (1989), p. 875.CrossRefGoogle Scholar
  12. 12.
    C.T. Liu and E.P. George,Scripta Metall. Mater., 24 (1990), p. 1285.CrossRefGoogle Scholar
  13. 13.
    P. Nagpal and I. Baker,Mater. Char., 27 (1991), p. 167.CrossRefGoogle Scholar
  14. 14.
    M.A. Crimp, K.M. Vedula, and D.J. Gaydosh,High Temperature Ordered Intermetallic Alloys II, MRS Symposium Proc., 81, ed. N.S. Stoloff et al. (Pittsburgh, PA: MRS, 1987), p. 499.Google Scholar
  15. 15.
    S.D. Strothers and K. Vedula,Prog. Powder Met., 43 (1987), p. 561.Google Scholar
  16. 16.
    P.J. Maziasz et al.,PM2TEC 96. Powder Metallurgy and Particulate Materials, 4 (Princeton, NJ: Metal Powder Industries Federation, 1996), pp. 15-41–15-54.Google Scholar
  17. 17.
    A.K. Misra,Metall. Trans., 21A (1990), pp. 441–446.Google Scholar
  18. 18.
    R. Subramanian and J.H. Schneibel, submitted toMat. Sci. and Eng. (1997).Google Scholar
  19. 19.
    R.L. Lynch et al.,Scr. Metall. Mater., 30 (1994), pp. 1157–1160.CrossRefGoogle Scholar
  20. 20.
    G.P. Dmitrieva, N.A. Razumova, and A.K. Shurin,Sov. Pow. Metall. Met. Ceram., 23 (2) (254) (1984), p. 159.CrossRefGoogle Scholar
  21. 21.
    R. Subramanian and J.H. Schneibel, unpublished work.Google Scholar
  22. 22.
    M. Inoue,MRS Proceedings of the Symposium on High-Temperature Ordered Intermetallic Alloys, 460, ed. C. Koch et al. (Pittsburgh, PA: MRS, in press).Google Scholar
  23. 23.
    R. Subramanian et al.,Scr. Mater. 35 (1996), p. 583.CrossRefGoogle Scholar
  24. 24.
    J.H. Schneibel et al.,Int. Symp. on Nickel and Iron Aluminides: Processing, Properties and Applications (Materials Park, OH: ASM, 1997), pp. 329–337.Google Scholar
  25. 25.
    A.T. Santhanam, P. Tierney, and J.L. Hunt,Metals Handbook, 10th ed., 2 (Materials Park, OH: ASM, 1990), p. 950.Google Scholar
  26. 26.
    P. Nagpal and I. Baker,Met. Trans., 21A (1990), pp. 2281–2282.Google Scholar
  27. 27.
    J.L. Ellis,Metals Handbook, 10th ed., 2 (Materials Park, OH: ASM, 1990), p. 978.Google Scholar
  28. 28.
    M.F. Ashby, F.J. Blunt, and M. Bannister,Acta. Metall., 37 (7) (1989), p. 1847.CrossRefGoogle Scholar
  29. 29.
    L.S. Sigl and H.F. Fischmeister,Acta Metall., 36 (4) (1988) p. 487.Google Scholar
  30. 30.
    R. Subramanian and J. H. Schneibel, submitted toMat. Sci. and Eng. Google Scholar
  31. 31.
    D.J. Gaydosh et al.,Mater. Sci. Eng., A150 (1992), p. 7.CrossRefGoogle Scholar
  32. 32.
    J.P. Hirth and J. Lothe,Theory of Dislocations, 2 (New York: Wiley-Interscience Publication, 1982).Google Scholar
  33. 33.
    P.R. Munroe and I. Baker,Acta. Metall. Mater., 39 (1991), p. 1011.CrossRefGoogle Scholar
  34. 34.
    G.E. Dieter,Mechanical Metallurgy (New York: McGraw-Hill, 1976), p. 266.Google Scholar
  35. 35.
    R. Subramanian and J.H. Schneibel (unpublished work).Google Scholar
  36. 36.
    H.G. Lee and J.-Y. Lee,Acta Metall., 32 (1984), pp. 131–136.CrossRefGoogle Scholar
  37. 37.
    R.A. Buchanan and Ping Li, report to V. K. Sikka, subcontract no. 11X-LAT42V (Oak Ridge, TN: Oak Ridge National Laboratory, October, 1996).Google Scholar
  38. 38.
    C.B. Thomas, M.S. thesis, University of Tennessee (1996).Google Scholar
  39. 39.
    P.J. Maziasz and W.D. Porter,Scr. Metall. Mater., 29 (1993), pp. 1043–1048.CrossRefGoogle Scholar
  40. 40.
    S. Raghunathan et al.,Advanced Mat. Processes, 4 (1996), pp. 21–26.Google Scholar
  41. 41.
    R. Baccino and F. More,29th International Symposium on Automotive Technology and automation, ed. D. Roller (Groyden, U.K.: Automotive Ltd., 1996), pp. 501–506.Google Scholar
  42. 42.
    J.H. Schneibel, E.D. Specht, and W.A. Simpson,Intermetallics, 4 (1996), p. 581.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 1997

Authors and Affiliations

  • R. Subramanian
  • J. H. Schneibel

There are no affiliations available

Personalised recommendations