Advertisement

Bulletin of Materials Science

, Volume 29, Issue 5, pp 535–546 | Cite as

Structural and electrochemical behaviour of sputtered vanadium oxide films: oxygen non-stoichiometry and lithium ion sequestration

  • K. J. Rao
  • B. Pecquenard
  • A. Gies
  • A. Levasseur
  • J. Etourneau
Electrochemistry

Abstract

Structural and electrochemical aspects of vanadium oxide films recently reported from ICMCB/ ENSCPB have been examined using appropriate structural models. It is shown that amorphous films are nonstoichiometric as a result of pre-deposition decomposition of V2O5. It is proposed that the structure of amorphous films corresponds to a nanotextured mosaic of V2O5 and V2O4 regions. Lithium intercalation into these regions is considered to occur sequentially and determined by differences in group electronegativities. Open circuit voltages (OCV) have been calculated for various stoichiometric levels of lithiation using available thermodynamic data with approximate corrections. Sequestration of lithium observed in experiments is shown to be an interfacial phenomenon. X-ray photoelectron spectroscopic observation of the formation of V3+ even when V5+ has not been completely reduced to V4+ is shown to be entirely consistent with the proposed structural model and a consequence of initial oxygen nonstoichiometry. Based on the structural data available on V2O5 and its lithiated products, it is argued that the geometry of VOn polyhedron changes from square pyramid to trigonal bipyramid to octahedron with increase of lithiation. A molecular orbital based energy band diagram is presented which suggests that lithiated vanadium oxides, LixV2O5, become metallic for high values ofx.

Keywords

Amorphous films vanadium oxide films structural and electrochemical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bullet D W 1980J. Phys. C13 L595Google Scholar
  2. Carathers E, Kleinmann L and Zang H I 1973Phys. Rev. B7 3753Google Scholar
  3. Chandrappa G T, Steunou N and Livage J 2002Nature 416 702CrossRefGoogle Scholar
  4. Clark R J H 1968The chemistry of the vanadium and the titanium (New York)Google Scholar
  5. Cocciantelli J M, Menetrier M, Delmas C, Doumerc J P, Pouchard M and Hagenmuller P 1992Solid State Ionics 50 99CrossRefGoogle Scholar
  6. Delmas C, Brethes S and Menetrier M 1991J. Power Sources 34 113CrossRefGoogle Scholar
  7. Delmas C, Cognac-Auradou H, Cocciantelli J M, Menetrier M and Doumerc J P 1994Solid State Ionics 69 257CrossRefGoogle Scholar
  8. Enjalbert R and Galy J 1986Acta Crystallogr. C, Cryst. Struct. Commun. 11 1467CrossRefGoogle Scholar
  9. Eyert V and Hock K H 1998Phys. Rev. B57 12727Google Scholar
  10. Galy J, Darriet J and Hagenmuller P 1971Rev. Chim. Min. 8 509Google Scholar
  11. Gies A, Pecquenard B, Benayad A, Martinez H, Gonbeau D, Fuess H and Levasseur A 2005Solid State Ionics 176 1627CrossRefGoogle Scholar
  12. Herbert C, Willinger M, Su D S, Pongratz P, Schattchneider P and Schologl R 2002Eur. Phys. J. B28 407Google Scholar
  13. Hermann K, Chakrabarti A, Haras A, Witko M and Tepper B 2001Phys. Status Solidi (a) 187 137CrossRefGoogle Scholar
  14. JANAF Thermodynamic Tables 1998 ACS, APS and NIST: New York, 11th EditionGoogle Scholar
  15. Kurmaer E Zet al 1998J. Phys. Cond. Matter 10 4081CrossRefGoogle Scholar
  16. Mattheiss L F 1994J. Phys. Cond. Matter 6 6477CrossRefGoogle Scholar
  17. Muhr H J, Krumeich F, Schönholzer U P, Bieri F, Niederberger M, Ganckler L J and Nesper R 2000Adv. Mater. 12 231CrossRefGoogle Scholar
  18. Müller U 1993Inorganic structural chemistry (New York)Google Scholar
  19. Pereira-Ramos J P, Messina R, Znaidi L and Baffier N 1988Solid State Ionics 1 886CrossRefGoogle Scholar
  20. Rocquefelte X, Boucher F, Gressier P and Ouvrard G 2003Chem. Mater. 15 1812CrossRefGoogle Scholar
  21. Sanderson R T 1976Chemical bonds and bond energy (New York: Academic Press)Google Scholar
  22. Sanderson R T 1983Polar covalence (New York: Academic Press)Google Scholar
  23. Schwingenschlogl U, Eyert V and Eckern U 2003Europhys. Lett. 64 682CrossRefGoogle Scholar
  24. Ven A V D, Aydinol M K, Ceder G, Kresse G and Hofner J 1998Phys. Rev. B58 2975Google Scholar
  25. Wang Y W, Xu H Y, Wang H, Zhang Y C, Song Z Q, Yan H and Wan C R 2004Solid State Ionics 167 419CrossRefGoogle Scholar
  26. Wells A F 1995Structural inorganic chemistry (New York)Google Scholar
  27. West K, Zachau-Christiansen B, Jacobsen T and Skaarup S 1995Solid State Ionics 76 15CrossRefGoogle Scholar
  28. Zavalij P Y and Whittingham M S 1999Acta Crystallogr. B55 627Google Scholar

Copyright information

© The Indian Academy of Sciences 2006

Authors and Affiliations

  • K. J. Rao
    • 1
  • B. Pecquenard
    • 1
    • 2
  • A. Gies
    • 1
    • 2
  • A. Levasseur
    • 1
    • 2
  • J. Etourneau
    • 1
    • 2
  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
  2. 2.ICMCB/ENSCPB, (CNRS-UPR 9048)Université Bordeaux IPessac CedexFrance

Personalised recommendations