Skip to main content
Log in

Structural and electrochemical behaviour of sputtered vanadium oxide films: oxygen non-stoichiometry and lithium ion sequestration

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Structural and electrochemical aspects of vanadium oxide films recently reported from ICMCB/ ENSCPB have been examined using appropriate structural models. It is shown that amorphous films are nonstoichiometric as a result of pre-deposition decomposition of V2O5. It is proposed that the structure of amorphous films corresponds to a nanotextured mosaic of V2O5 and V2O4 regions. Lithium intercalation into these regions is considered to occur sequentially and determined by differences in group electronegativities. Open circuit voltages (OCV) have been calculated for various stoichiometric levels of lithiation using available thermodynamic data with approximate corrections. Sequestration of lithium observed in experiments is shown to be an interfacial phenomenon. X-ray photoelectron spectroscopic observation of the formation of V3+ even when V5+ has not been completely reduced to V4+ is shown to be entirely consistent with the proposed structural model and a consequence of initial oxygen nonstoichiometry. Based on the structural data available on V2O5 and its lithiated products, it is argued that the geometry of VOn polyhedron changes from square pyramid to trigonal bipyramid to octahedron with increase of lithiation. A molecular orbital based energy band diagram is presented which suggests that lithiated vanadium oxides, LixV2O5, become metallic for high values ofx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bullet D W 1980J. Phys. C13 L595

    Google Scholar 

  • Carathers E, Kleinmann L and Zang H I 1973Phys. Rev. B7 3753

    Google Scholar 

  • Chandrappa G T, Steunou N and Livage J 2002Nature 416 702

    Article  CAS  Google Scholar 

  • Clark R J H 1968The chemistry of the vanadium and the titanium (New York)

  • Cocciantelli J M, Menetrier M, Delmas C, Doumerc J P, Pouchard M and Hagenmuller P 1992Solid State Ionics 50 99

    Article  CAS  Google Scholar 

  • Delmas C, Brethes S and Menetrier M 1991J. Power Sources 34 113

    Article  CAS  Google Scholar 

  • Delmas C, Cognac-Auradou H, Cocciantelli J M, Menetrier M and Doumerc J P 1994Solid State Ionics 69 257

    Article  CAS  Google Scholar 

  • Enjalbert R and Galy J 1986Acta Crystallogr. C, Cryst. Struct. Commun. 11 1467

    Article  Google Scholar 

  • Eyert V and Hock K H 1998Phys. Rev. B57 12727

    Google Scholar 

  • Galy J, Darriet J and Hagenmuller P 1971Rev. Chim. Min. 8 509

    CAS  Google Scholar 

  • Gies A, Pecquenard B, Benayad A, Martinez H, Gonbeau D, Fuess H and Levasseur A 2005Solid State Ionics 176 1627

    Article  CAS  Google Scholar 

  • Herbert C, Willinger M, Su D S, Pongratz P, Schattchneider P and Schologl R 2002Eur. Phys. J. B28 407

    Google Scholar 

  • Hermann K, Chakrabarti A, Haras A, Witko M and Tepper B 2001Phys. Status Solidi (a) 187 137

    Article  CAS  Google Scholar 

  • JANAF Thermodynamic Tables 1998 ACS, APS and NIST: New York, 11th Edition

  • Kurmaer E Zet al 1998J. Phys. Cond. Matter 10 4081

    Article  Google Scholar 

  • Mattheiss L F 1994J. Phys. Cond. Matter 6 6477

    Article  CAS  Google Scholar 

  • Muhr H J, Krumeich F, Schönholzer U P, Bieri F, Niederberger M, Ganckler L J and Nesper R 2000Adv. Mater. 12 231

    Article  CAS  Google Scholar 

  • Müller U 1993Inorganic structural chemistry (New York)

  • Pereira-Ramos J P, Messina R, Znaidi L and Baffier N 1988Solid State Ionics 1 886

    Article  Google Scholar 

  • Rocquefelte X, Boucher F, Gressier P and Ouvrard G 2003Chem. Mater. 15 1812

    Article  CAS  Google Scholar 

  • Sanderson R T 1976Chemical bonds and bond energy (New York: Academic Press)

    Google Scholar 

  • Sanderson R T 1983Polar covalence (New York: Academic Press)

    Google Scholar 

  • Schwingenschlogl U, Eyert V and Eckern U 2003Europhys. Lett. 64 682

    Article  Google Scholar 

  • Ven A V D, Aydinol M K, Ceder G, Kresse G and Hofner J 1998Phys. Rev. B58 2975

    Google Scholar 

  • Wang Y W, Xu H Y, Wang H, Zhang Y C, Song Z Q, Yan H and Wan C R 2004Solid State Ionics 167 419

    Article  CAS  Google Scholar 

  • Wells A F 1995Structural inorganic chemistry (New York)

  • West K, Zachau-Christiansen B, Jacobsen T and Skaarup S 1995Solid State Ionics 76 15

    Article  CAS  Google Scholar 

  • Zavalij P Y and Whittingham M S 1999Acta Crystallogr. B55 627

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, K.J., Pecquenard, B., Gies, A. et al. Structural and electrochemical behaviour of sputtered vanadium oxide films: oxygen non-stoichiometry and lithium ion sequestration. Bull Mater Sci 29, 535–546 (2006). https://doi.org/10.1007/BF02914086

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914086

Keywords

Navigation