Metallurgical Transactions B

, 6:377 | Cite as

Kinetics of texture development and sulfur removal in oriented silicon iron

  • W. M. Swift
  • F. J. Harvey
  • K. Foster
Process Control


The kinetics of (110)[001] secondary grain growth, the temperature dependence of selectivity to a (110)[001] texture, and the kinetics of desulfurization in cold rolled-decarburized, thin sheet (semiprocessed 3 pct Si−Fe) were measured as were the parameters requited to produce (110)[001] grain-oriented sheet by high temperature strip annealing. Kinetic studies revealed that (110)[001] grain growth in several semiprocessed sheets exhibited the following characteristics: 1) sigmoidal growth kinetics; 2) an activation energy of ∼64 Kcal; and 3) essentially complete (110)[001] secondary grain growth within 8 min at temperatures of 1000°C and higher. Measurements of magnetic torque properties and pole figures of isothermally annealed semiprocessed sheet showed a degradation in selectivity to a (110)[001] texture above 1050°C. Desulfurization kinetics were in good agreement with a theoretical diffusion model which takes into account sulfur removal in the presence of a dispersed second phase of MnS particles. A two-stage high temperature strip annealing cycle in dry hydrogen produced (110)[001] grain-oriented sheet having magnetic properties comparable to those obtained by conventional box annealing.


Torque Metallurgical Transaction Desulfurization Pole Figure Maximum Torque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. G. Benford:J. Appl. Phys., 1967, vol. 38, no. 3, p. 1100.CrossRefGoogle Scholar
  2. 2.
    M. F. Littmann: U.S. Patent No. 2,599,340, 1952.Google Scholar
  3. 3.
    H. C. Fiedler:J. Appl. Phys., 1958, vol. 29, no. 3, p. 361.CrossRefGoogle Scholar
  4. 4.
    J. W. Flowers and S. P. Karas:J. Appl. Phys., 1967, vol. 38, p. 1085.CrossRefGoogle Scholar
  5. 5.
    W. M. Swift:Met. Trans., 1973, vol. 4, p. 153.CrossRefGoogle Scholar
  6. 6.
    V. V. Gubernatorov, L. P. Levit, B. K. Sukolov, I. K. Schastlivtseva, and D. B. Titorov:Phys. Metals Metallogr., 1967, no. 3, p. 146.Google Scholar
  7. 7.
    W. M. Swift:Met. Trans., 1973, vol. 4, p. 841.CrossRefGoogle Scholar
  8. 8.
    J. E. May and D. Turnbull:Trans. TMS-AIME, 1958, vol. 212, p. 769.Google Scholar
  9. 9.
    Recrystallization, Grain Growth and Textures, H. Margelin, ed., p. 461, American Society for Metals, Metals Park, Ohio, 1967.Google Scholar
  10. 10.
    J. E. May and D. Turnbull:J. Appl. Phys., 1959, vol. 30, no. 4, p. 2105.CrossRefGoogle Scholar
  11. 11.
    H. C. Fiedler:J. Appl. Phys., 1967, vol. 38, no. 3, p. 1098.CrossRefGoogle Scholar
  12. 12.
    J. L. Houze, Jr.: Allegheny-Ludlum Industries, Pittsburgh, Pa. unpublished research, 1974.Google Scholar
  13. 13.
    O. H. Kriege and A. L. Weife:Talanta, 1962, vol., 9, p. 673.CrossRefGoogle Scholar
  14. 14.
    M. F. Littman:J. Appl. Phys., 1967, vol. 38, p. 1104.CrossRefGoogle Scholar
  15. 15.
    W. M. Swift:IEEE Trans. Mag., 1973, vol. MAG-9, no. 1, p. 46.CrossRefGoogle Scholar
  16. 16.
    R. M. Bozorth:Fernomagnetism, p. 584, D. Van Nostrand Company, Inc., Princeton, N.J., 1964.Google Scholar
  17. 17.
    N. G. Ainslie and A. V. Seybolt:J. Iron Steel Inst., 1960, vol. 194, p. 341.Google Scholar
  18. 18.
    W. Jost:Diffusion In Solids, Liquids and Gases, p. 70. Academic Press, Inc., New York 1952.Google Scholar
  19. 19.
    D. V. Danckwerts:Trans. Faraday Soc., 1950, vol. 46, p. 701.CrossRefGoogle Scholar
  20. 20.
    W. M. Swift, W. T. Reynolds, and J. W. Shilling: AIP Conference Proceedings, 18th Annual Magnetism and Magnetic Materials, no. 10, p. 976, 1973.Google Scholar

Copyright information

© The Metallurgical Society of AIME 1975

Authors and Affiliations

  • W. M. Swift
    • 1
  • F. J. Harvey
    • 1
  • K. Foster
    • 1
  1. 1.Magnetic Materials ResearchWestinghouse Research LaboratoriesPittsburgh

Personalised recommendations