Metallurgical Transactions

, Volume 2, Issue 7, pp 1959–1963 | Cite as

The liquidus surfaces of ternary systems involving compound semiconductors: I. General thermodynamic analysis

  • A. S. Jordan
Physical Chemistry


Based on the method of chemical potentials, a general thermodynamic equation for the liquidus surface of a ternary system has been derived relating the activities and partial molar enthalpies in the ternary melt to the composition and the molar enthalpy of the ternary solid. Particularly simple expressions, especially useful for compound semiconductors, were deduced from the general equation for a ternary liquid in equilibrium with i) a binary compoundA mBn incorporating a dilute soluteC and with ii) a continuous series of ternary solid solutions formed betweenA mBn andC qBr. Assuming regular ternary solution behavior in the melt, explicit liquidus equations for both of these cases (settingm=n=q=r=0.5) were obtained in terms of the liquid compositions and the heats of fusion of the binary compounds. It is shown that for a binary liquid, the ternary liquidus equation reduces to that of Vieland.


GaAs Ternary System Liquidus Surface Molar Enthalpy Binary Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Vieland:Acta Met., 1963, vol. 11, p. 137.CrossRefGoogle Scholar
  2. 2.
    C. D. Thurmond:J. Phys. Chem. Solids, 1965, vol. 26, p. 785.CrossRefGoogle Scholar
  3. 3.
    W. F. Schottky and M. B. Bever:Acta Met., 1958, vol. 6, p. 320.CrossRefGoogle Scholar
  4. 4.
    C. Wagner:Acta Met., 1958, vol. 6, p. 309.CrossRefGoogle Scholar
  5. 5.
    Y. Furukawa and C. D. Thurmond:J. Phys. Chem. Solids, 1965, vol. 26, p. 1535.CrossRefGoogle Scholar
  6. 6.
    M. B. Panish:J. Phys. Chem. Solids, 1966, vol. 27, p. 291.CrossRefGoogle Scholar
  7. 7.
    M. B. Panish:J. Electrochem. Soc., 1966, vol. 113, p. 224.CrossRefGoogle Scholar
  8. 8.
    M. B. Panish:J. Less Common Metals, 1966, vol. 10, p. 416.CrossRefGoogle Scholar
  9. 9.
    M. B. Panish:J. Electrochem. Soc., 1967, vol. 114, p. 516.CrossRefGoogle Scholar
  10. 10.
    M. B. Panish:J. Electrochem. Soc., 1966, vol. 113, p. 1226.CrossRefGoogle Scholar
  11. 11.
    M. B. Panish and S. Sumski:J. Phys. Chem. Solids, 1969, vol. 30, p. 129.CrossRefGoogle Scholar
  12. 12.
    M. B. Panish, R. T. Lynch, and S. Sumski:Trans. TMS-AIME, 1969, vol. 245, p. 559.Google Scholar
  13. 13.
    A. S. Jordan:Met. Trans., 1970, vol. 1, p. 239.Google Scholar
  14. 14.
    I. Prigogine and R. Defay:Chemical Thermodynamics, Longmans Green and Co., London, 1954.Google Scholar
  15. 15.
    M. Ilegems and G. L. Pearson:Proc. of the Second Intern. Symp. on GaAs Dallas, 1968, Published by the Institute of Physics and the Physical Society, London, S. W. 1, 1969.Google Scholar
  16. 16.
    A. S. Jordan:Met. Trans., 1971, vol. 2, pp. 1965–70.Google Scholar
  17. 17.
    L. S. Darken:Trans. TMS-AIME, 1967, vol. 239, p. 90.Google Scholar
  18. 18.
    G. B. Stringfellow: Hewlet Packard Co., Palo Alto, Calif., private communication, 1970.Google Scholar
  19. 19.
    S. Kimura and M. B. Panish:J. Chem Thermodyn. 1970, vol. 2, p. 77.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • A. S. Jordan
    • 1
  1. 1.Beil Telephone LaboratoriesMurray Hill

Personalised recommendations