Advertisement

Biologia Plantarum

, 37:101 | Cite as

Changes in nitrogen metabolism enzyme activities ofVicia faba in response to aluminum and cadmium

  • A. M. Shalaby
  • S. A. M. Al-Wakeel
Original Papers

Abstract

Nodules of faba bean (Vicia faba L. cv. Giza 3) plants grown in pots containing clay-loam soil for 90 d have an active nitrate reductase (NR), while the leaves did not show detectable activity. Spraying the plant with increasing concentrations of Al3+ or Cd2+ (0–1000 μM) significantly inhibited the nodules NR activity, the decline being more pronounced in Cd2+ treatment. The specific activity of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) were more prominent in the 60- than in 90-d-old plants; GOT was always higher than GPT. Furthermore, GOT was more sensitive to Al3+ and Cd2+ treatments and its activity was significantly decreased when the metal concentration increased. Also, Cd2+ proved to be more effective than Al3+ in suppressing the GOT activity in the nodules, with less significant effect observed in the leaves. In contrast, GPT was hardly affected by the various metal treatments, particulary in the leaves.

Key words

faba bean glutamate-oxaloacetate transaminase glutamate-pyruvate transaminase heavy metals nitrate reductase nodules 

References

  1. Andrews, M.: The partitioning of nitrate assimilation between root and shoot of higher plants.—Plant Cell Environ.9: 511–519, 1986.Google Scholar
  2. Bauer, A., Joy, K.W., Urquhart, A.A.: Amino acid metabolism of pea leaves, labelling studies on utilization of amides.—Plant Physiol.59: 920–924, 1977.PubMedGoogle Scholar
  3. Cambraia, J., Galvani, F.R., Estevao, M.M., Sant’Anna, R.: Effects of aluminum on organic acid, sugar and amino acid composition of root system of sorghum (Sorghum bicolor L. Moench.).—J. Plant Nutr.6: 313–322, 1983.Google Scholar
  4. Clyjsters, H., Van Assche, F.: Inhibition of photosynthesis by heavy metals.—Photosynth. Res.7: 31–40, 1985.CrossRefGoogle Scholar
  5. Drady, D.J., Edwards, D.G., Asher, C.J., Blamey, F.P.C.: Calcium amelioration of aluminium toxicity effects on root hair development in soybean [Glycine max (L.) Merr.].—New Phytol.23: 531–538, 1993.Google Scholar
  6. Foy, C.D.: Physiological effects of hydrogen, aluminum and manganese toxicities in acid soil.— Agron. Monogr.12: 57–97, 1984.Google Scholar
  7. Foy, C.D., Chaney, R.L., White, M.C.: The physiology of metal toxicity in plants.—Annu. Rev. Plant Physiol.29: 511–566, 1978.CrossRefGoogle Scholar
  8. Guerrero, M.G., Vega, J.M., Losada, M.: The assimilatory nitrate-reducing system and its regulation. —Annu. Rev. Plant Physiol.32: 169–204, 1981.CrossRefGoogle Scholar
  9. Harper, J.E., Hageman, R.H.: Canopy and seasonal profiles of nitrate reductase in soybeans (Glycine max L. Merr.).—Plant Physiol.49: 146–154, 1972.PubMedGoogle Scholar
  10. Huang, C.Y., Bazzaz, F.A., Vanderhoef, L.N.: The inhibition of soybean metabolism by cadmium and lead.—Plant Physiol.54: 122–124, 1974.PubMedCrossRefGoogle Scholar
  11. Jarvis, S.C., Hatch, D.J.: The effects of low concentrations of aluminum on the growth and uptake of nitrate-N by white clover.—Plant Soil95: 43–55, 1986.CrossRefGoogle Scholar
  12. Kinraide, T.B., Parker, D.R.: Non-phytotoxicity of the aluminum sulfate ion, AlSO4 +.—Physiol. Plant.71: 207–212, 1987.CrossRefGoogle Scholar
  13. Lahiri, K., Chattopadhyay, S., Chatterjee, S., Ghosh, B.: Biochemical changes in nodules ofVigna mungo (L.) during vegetative and reproductive stages of plant growth in the field.—Ann. Bot.71: 485–488, 1993.CrossRefGoogle Scholar
  14. Mathys, W.: Enzymes of heavy-metal-resistant and non-resistant populations ofSilene cucubalus and their interaction with heavy metals somein vitro andin vivo.—Physiol. Plant.33: 161–165, 1975.CrossRefGoogle Scholar
  15. Mullette, K.J.: Stimulation of growth inEucalyptus due to aluminum.—Plant Soil42: 495–499, 1975.CrossRefGoogle Scholar
  16. Naguib, M.I., Hamed, A.A., Al-Wakeel, S.A.: Effect of cadmium on some metabolic aspects of radish and wheat plants, under water culture conditions.—Bull. Fac. Sci. Sana’s Univ.3: 17–39, 1983.Google Scholar
  17. Poschenrieder, C., Gunse, B., Barcelo, J.: Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves.—Plant Physiol.90: 1365–1371, 1989.PubMedGoogle Scholar
  18. Randall, D.D., Russell, W.J., Johnson, D.R.: Nodule nitrate reductase as a source of reduced nitrogen in soybean,Glycine max.—Physiol. Plant.44: 325–328, 1978.CrossRefGoogle Scholar
  19. Reitman, S., Frankel, S.: A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases.—Amer. J. clin. Pathol.28: 56–63, 1957.Google Scholar
  20. Reynolds, P.H.S., Farnden, K.J.F.: The involvement of aspartate amino transferases in ammonium assimilation in lupin nodules.—Phytochemistry18: 1625–1630, 1979.CrossRefGoogle Scholar
  21. Reynolds, P.H.S., Blevins, D.G., Boland, M.J., Schubert, K.R., Randall, D.D.: Enzymes of ammonia assimilation in legume nodules: A comparison between ureide- and amide-transporting plants.— Physiol. Plant.55: 255–260, 1982.CrossRefGoogle Scholar
  22. Roy, A.K., Sharma, A., Talukder, G.: Some aspects of aluminum toxicily in plants.—Bot. Rev.54: 145–178, 1988.CrossRefGoogle Scholar
  23. Santoro, L.G., Soares, T.E., Magalhaes, A.C.: Effect of aluminum on nitrate reduction inZea mays. —Phyton Rev. Int. Bot. Exp.44: 75–80, 1984.Google Scholar
  24. Shalaby, A.M., Saleh, S.A.: Effect of aluminum and cadmium on nodulation, plant growth, and nitrogen fixation of faba bean.—J. agr. Sci. Mansoura Univ.16: 68–73, 1991.Google Scholar
  25. Somashekaraiah, B.V., Padmaja, K., Prasad, A.R.K.: Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation.—Physiol. Plant.85: 85–89, 1992.CrossRefGoogle Scholar
  26. Thibodeau, P.S., Jaworski, E.G.: Patterns of nitrogen utilization in the soybean.—Planta127: 133–147, 1975.CrossRefGoogle Scholar
  27. Yandow, T.S., Klein, R.M.: Nitrate reductase of primary roots of red spruce seedlings: Effects of acidity and metal ions.—Plant Physiol.81: 723–725, 1986.PubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 1995

Authors and Affiliations

  • A. M. Shalaby
    • 1
  • S. A. M. Al-Wakeel
    • 1
  1. 1.Botany Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations