Advertisement

Inhibitory receptors for HLA class I molecules on cytolytic T lymphocytes

Functional relevance and implications for anti-tumor immune responses
  • M. C. Mingari
  • M. Ponte
  • C. Vitale
  • F. Schiavetti
  • S. Bertone
  • L. Moretta
Review

Abstract

In recent years, the molecular mechanism by which natural killer cells lyze, or fail to lyze, different target cells has been elucidated. Natural killer cells express receptors which recognize MHC class I molecules on target cells. This interaction leads to inhibition of cytolytic activity, thus preventing lysis of target cells. The receptors belong to two distinct molecular types: (1) the Ig superfamily which includes receptors (p58.1, p58.2, p70, and p140) which recognize specific HLA allotypes; (2) CD94 molecules which display a broad specificity for HLA class I molecules. Recently, a subset of cytolytic T lymphocytes has been shown to express the various natural killer cell receptors. Such T cells are detectable in peripheral blood, spleen, tonsils, and lymph nodes, but not in the thymus and cord blood. In some instances, two or more natural killer receptors can be coexpressed at the single cell level. Surface marker analysis has revealed that natural killer cell receptor-positive T cells always express a memory phenotype. Moreover, they are characterized by a skewed T cell receptor VΒ repertoire. Further analysis of the T cell receptor VDJ sequences revealed that natural killer cell receptor-positive, CD3-positive cells isolated from a given individual are oligoclonal or monoclonal in nature. Crosslinking of natural killer receptors leads to inhibition of different T cell functions, including non-specific lysis of appropriate HLA class I-negative target cells, T cell receptor mediated cytotoxicity, and cytokine production. The inhibitory effect on T cell receptor-mediated function has important implications. Thus, the expression of natural killer cell receptors as a consequence of chronic antigen stimulation may result in functional impairment of specific cytolytic T lymphocytes. Preliminary data indicate that this phenomenon may occur in tumor or virally infected patients. Remarkably, various patients with large granular lymphocyte expansions characterized by a CD3-/ natural killer receptor-positive phenotype had chronic viral infections. The fact that antigen-specific cytolytic T lymphocytes may simultaneously express T cell and natural killer cell receptors, both recognizing HLA class I molecules but mediating opposite signals, offers new perspectives in our appreciation of the regulation of T cell responses and offers new clues for understanding the immunopathological events involved in certain diseases.

Key words

HLA class I molecules Inhibitory receptors Cytolytic T lymphocytes T cell expansion Natural killer cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ljunggren H-G, Karre K. In search of the “missing self”. MHC molecules and NK cell recognition. Immunol Today 1990: 11:237.PubMedCrossRefGoogle Scholar
  2. 2.
    Karre K. An unexpected petition for pardon. Curr Biol 1992: 11:613.CrossRefGoogle Scholar
  3. 3.
    Moretta L, Ciccone E, Moretta A, Höglund P, öhlen C, KÄrre K. Allorecognitionby NK cells:nonself or no self? Immunol Today 1992; 13:300.PubMedCrossRefGoogle Scholar
  4. 4.
    Storkus WJ, Howell DN, Salter RD, Dawson JR, Cresswell P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J Immunol 1987; 138:1657.PubMedGoogle Scholar
  5. 5.
    Shimizu Y, DeMars R. Demonstration by class I gene transfer that reduced susceptibility of human cells to natural killer cellmediated lysis is inversely correlated with HLA class I antigen expression. Eur J Immunol 1989; 19:447.PubMedCrossRefGoogle Scholar
  6. 6.
    Correa I, Corral L, Raulet DH. Multiple natural killer cell-activating signals are inhibited by major histocompatibility complex class I expression in target cells. Eur J Immunol 1994; 24:1323.PubMedCrossRefGoogle Scholar
  7. 7.
    Liao NS, Bix M, Zijstra M, Jaenisch R, Raulet D. MHC class I deficiency:susceptibility to natural killer (NK) cells and impaired NK activity. Science 1991; 253:199.PubMedCrossRefGoogle Scholar
  8. 8.
    Ljunggren HG, Kaer LV, Ploegh HL, Tonegawa S. Altered natural killer cell repertoire in Tap-1 mutant mice. Proc Natl Acad Sci USA 1994; 91:6521.CrossRefGoogle Scholar
  9. 9.
    Stam NJ, Kast WM, Voordouw AC, Pastoors LB, Van Der Hoeven FA, Melief CJM, Ploegh HL. Lack of correlation between levels of MHC class I antigen and susceptibility to lysis of small cellular lung carcinoma (SCLC) by natural killer cells. J Immunol 1989; 142:4113.PubMedGoogle Scholar
  10. 10.
    Moretta A, Tambussi G, Bottino C, Tripodi G, Merli A, Ciccone E, Pantaleo G, Moretta L. A novel surface antigen expressed by a subset of human CD3-CD16+ natural killer cells. Role in cell activation and regulation of cytolytic function. J Exp Med 1990; 171:695.PubMedCrossRefGoogle Scholar
  11. 11.
    Moretta A, Bottino C, Pende D, Tripodi G, Tambussi G, Viale O, Orengo A, Barbaresi M, Merli A, Ciccone E, Moretta L. Identification of four subsets of human CD3-CD16+ NK cells by the expression of clonally distributed functional surface molecules. Correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J Exp Med 1990; 172:1589.PubMedCrossRefGoogle Scholar
  12. 12.
    Ciccone E, Pende D, Viale O, Di Donato C, Tripodi G, Orengo AM, Guardiola J, Moretta A, Moretta L. Evidence of a natural killer (NK) cell repertoire for (allo)antigen recognition:definition of five distinct NIC-determined allospecificities in humans. J Exp Med 1992; 175:709.PubMedCrossRefGoogle Scholar
  13. 13.
    Moretta A, Vitale M, Bottino C, Orengo AM, Morelli L, Augugliaro R, Barbaresi M, Ciccone E, Moretta L. P58 molecules as putative receptors for MHC class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J Exp Med 1993; 178:597.PubMedCrossRefGoogle Scholar
  14. 14.
    Bottino C, Vitale M, Olcese L, Sivori S, Morelli L, Augugliaro R, Ciccone E, Moretto L, Moretto A. The human natural killer cell receptor for major histocompatibility complex class I molecules. Surface modulation of p58 molecules and their linkage to CD3z chain, FceRIg chain and the p561ck kinase. Eur J Immunol 1994;24:2527.PubMedCrossRefGoogle Scholar
  15. 15.
    Colonna M, Spies T, Strominger JL, Ciccone E, Moretta A, Moretta L, Pende D, Viale O. Alloantigen recognition by human natural killer cells is associated with HLA-C or a closely linked gene. Proc Natl Acad Sci USA 1992: 89:7983.PubMedCrossRefGoogle Scholar
  16. 16.
    Biassoni R, Falco M, Cambiaggi A, Costa P, Verdiani S, Pende D, Conte R, Di Donato C, Parham P, Moretta L. Amino acid substitutions can influence the NK-mediated recognition of HLA-C molecules. Role of serine-77 and lysine-80 in the target cell protection from lysis mediated by “group 2” or “group 1” NK clones. J Exp Med 1995: 182:605.PubMedCrossRefGoogle Scholar
  17. 17.
    Moretta A, Vitale M, Sivori S, Bottino C, Morelli L, Augugliaro R, Barbaresi M, Pende D, Ciccone E, Lopez-Botet M, Moretta L. Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles. J Exp Med 1994: 180:545.PubMedCrossRefGoogle Scholar
  18. 18.
    Moretta A, Bottino C, Vitale M, Pende D, Biassoni R. Mingari MC, Moretta L, Receptors for HLA-class I-molecules in human natural killer cells. Annu Rev Immunol 1996: 14:619.PubMedCrossRefGoogle Scholar
  19. 19.
    Litwin V, Gumperz JE, Parham P, Phillips JH, Lanier LL. NKB1: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J Exp Med 1994: 180:537.PubMedCrossRefGoogle Scholar
  20. 20.
    Gumperz JE, Litwin V, Phillips JH, Lanier LL, Parham P. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB 1, a putative HLA receptor. J Exp Med 1995: 181:1133.PubMedCrossRefGoogle Scholar
  21. 21.
    Pende D, Biassoni R, Cantoni C, Verdiani S, Falco M. Di Donato C, Accame L, Bottino C, Moretta A, Moretta L. The natural killer cell receptor specific for HLA-A allotypes:a novel member of the p58/p70 family of inhibitory receptors which is characterized by three Ig-like domains and is expressed as a 140 kD disulphide-linked dimer. J Exp Med 1996: 184:505.PubMedCrossRefGoogle Scholar
  22. 22.
    Vitale M, Sivori S, Pende D, Augugliaro R, Di Donato C, Amoroso A, Malnati M, Bottino C, Moretta L, Moretta A. Physical and functional independency of p70 and p58 NK cell receptors for HLA-class I. Their role in the definition of different groups of alloreactive NK cell clones. Proc Natl Acad Sci USA1996; 93:1453.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferrini S, Miescher S, Zocchi MR, Von Fliedner V, Moretta A, Phenotypic and functional characterization of recombinant interleukin-2 (rIL-2)-induced activated killer cell. Analysis at the population and clonal levels. J Immunol 1987: 138:1297.PubMedGoogle Scholar
  24. 24.
    Mingari MC, Vitale C, Cambiaggi A, Schiavetti F, Melioli G, Ferrini S, Poggi A. Cytolytic T lymphocytes displaying natural killer (NK)-like activity:expression of NK-related functional receptors for HLA class I molecules (p58 and CD94) and inhibitory effect on the TCR-mediated target cell lysis or lymphokine production. Int Immunol 1995;7:697.PubMedCrossRefGoogle Scholar
  25. 25.
    Mingari MC, Vitale C, Schiavetti F, Cambiaggi A, Bertone S, Zunino A, Ponte M. HLA-class I-specific inhibitory receptors of NK type on a subset of human T cells. Chem Immunol 1996: 64:133.Google Scholar
  26. 26.
    Phillips JH, Gumberz JE, Parham P, Lanier LL. Superantigendependent, cell-mediated cytotoxicity inhibited by MHC class I receptor on T lymphocytes. Science 1995: 128:403.CrossRefGoogle Scholar
  27. 27.
    Mingari MC, Schiavetti F, Ponte M, Vitale M, Maggi E, Romagnani S, Demarest J, Pantaleo G, Fauci AS, Moretta L. Human CD8+ T lymphocyte subsets that express HLA-class I specific inhibitory receptors represent oligoclonaily or monoclonally expanded cell populations. Proc Natl Acad Sci USA. In press.Google Scholar
  28. 28.
    Wagtmann N, Biassoni R, Cantoni C, Verdiani S, Malnati MS, Vitale M, Bottino C, Moretta L, Moretta A, Long EO. Molecular clones of the p58 NK cell receptor reveal immunoglobulin related molecules with diversity in both the extra-and intracellular domains. Immunity 1995: 2:439.PubMedCrossRefGoogle Scholar
  29. 29.
    D’Andrea A, Chang C, Franz-Bacon K, McClanahan T, Phillips JH, Lanier LL. Molecular cloning of NKB 1. A natural killer cell receptor for HLA-B allotypes. J Immunol 1995; 155:2306.PubMedGoogle Scholar
  30. 30.
    Aramburu J, Balboa MA, Ramirez A, Silva A, Acevedo A, Sanchez-Madrid F, Landàzuri MO de, López-Botet M. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-γ/δ+ T lymphocytes. Inhibition of IL-2 dependent proliferation by anti-Kp43 monoclonal antibody. J Immunol 1990:44:3238.Google Scholar
  31. 31.
    Aramburu J, Balboa MA, Izquierdo M, Lopez-Botet M. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and TCR T lymphocytes. II. Modulation of natural killer cytotoxicity by anti-Kp43 monoclonal antibody. J Immunol 1991; 147:714.PubMedGoogle Scholar
  32. 32.
    Chang C, Rodriguez A, Carretero M, Lopez-Botet M, Phillips JH, Lanier LL. Molecular characterization of human CD94:a type II membrane glycoprotein related to the C-type lectin superfamily. Eur J Immunol 1995; 25:2433.PubMedCrossRefGoogle Scholar
  33. 33.
    Sivori S, Vitale M, Bottino C, Marcenaro E, Sanseverino L, Parolini S, Moretta L, Moretta L. CD94 functions as a natural killer cell inhibitory receptor for different HLA-class-I alleles. Identification of the inhibitory form of CD94 by the use of novel monoclonal antibodies. Eur J Immunol 1996; 26:2487.PubMedCrossRefGoogle Scholar
  34. 34.
    Phillips JH, Chang C, Mallison J, Gumperz JE, Parham P, Lanier LL. CD94 and a novel associated protein (94AP) form of NK cell receptor involved in the recognition of HLA-A, HLA-B and HLA-C allotypes. Immunity 1996; 5:163.PubMedCrossRefGoogle Scholar
  35. 35.
    Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, Kinet JP, Long EO. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 1996:4:77.PubMedCrossRefGoogle Scholar
  36. 36.
    Olcese L, Lang P, Vély F, Cambiaggi A, Marguet D, Bléry M. Hippen KL, Biassoni R, Moretta A, Moretta L, Cambier JC, Vivier E. Human and mouse natural killer cell inhibitory receptors recruit the PTP1C and PTP1D protein tyrosine phosphatase. J Immunol 1996; 156:4531.PubMedGoogle Scholar
  37. 37.
    Yokoyama WM, Seaman WE. The Ly49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells:the NK gene complex. Annu Rev Immunol 1993; 11:613.PubMedGoogle Scholar
  38. 38.
    Raulet DH, Held W. Natural killer cell receptors: the offs and ons of NK cell recognition. Cell 1995: 82:697.PubMedCrossRefGoogle Scholar
  39. 39.
    Ciccone E, Pende D, Viale O, Di Donato C, Orengo AM. Biassoni R, Verdiani S, Amoroso A, Moretta A, Moretta L. Involvement of HLA class I alleles in NK cell specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med 1992; 176:963.PubMedCrossRefGoogle Scholar
  40. 40.
    Houchins JP, Yabe T, McSherry C, Bach F. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 1991: 173:1017.PubMedCrossRefGoogle Scholar
  41. 41.
    Gray D Immunological memory. Annu Rev Immunol 1993: 11:49.PubMedCrossRefGoogle Scholar
  42. 42.
    Whang EC, Moss PA, Frodsham P, Lehner PI, Bell JI, Borysiewicz K. CD8highCD57+ T lymphocytes in normal, healthy individuals are oligoclonal and respond to human cytomesalovirus. J Immunol 1995; 155:5046.Google Scholar
  43. 43.
    Pantaleo G, Demarest JF, Soudeyns H, Graziosi C, Denis F. Adelsberger JW, Borrow P, Saag MS, Shaw GM, Sekaly RP, Fauci AS. Major expansion of CD8+ T cells with a predominant Vb usage during the primary immune response to HIV. Nature 1994; 370:463.PubMedCrossRefGoogle Scholar
  44. 44.
    Utz U, Banks D, Jacobson S, Biddison WE. Analysis of the T-cell receptor repertoire of human T-cell leukemia virus type-1 (HTLV-1). Tax-specific CD8+ cytotoxic T lymphocytes from patients with HTLV-1-associated disease: evidence for oligoclonal expansion. J Virol 1996; 70:843.PubMedGoogle Scholar
  45. 45.
    Fitzgerald JE, Ricalton NS, Meyer AC, West SG, Kaplan H, Behrendt C, Kotzin BL. Analysis of clonal CD8+ T cell expansions in normal individuals and patients with rheumatoid arthritis. J Immunol 1995; 154:3538.PubMedGoogle Scholar
  46. 46.
    Cauda R, Coletti D, Lucia MB, Tumbarello M. Ruini C, Orengo AM, Moretta A. Analysis of natural killer (NK) cell subsets defined by the expression of two novel surface antigens (EB6 and GL183) in AIDS and AIDS-related conditions. Clin Immunol Immunopathol 1994; 70:198.PubMedCrossRefGoogle Scholar
  47. 47.
    Semenzato G, Pandolfi F, Chisesi T, Rossi G de, Pizzolo G, Zambello R, Trentin L, Agostini C, Dini E, Vesignani M, Cafaro A, Pasqualetti D, Giubellino MC, Migone N, Foà R. The lymphoproliferative disease of granular lymphocytes. A heterogenous disorder ranging from indolent to aggressive conditions. Cancer 1987; 60:2971.PubMedCrossRefGoogle Scholar
  48. 48.
    Oshimi K, Yamada O, Kaneko T, Nishinarita S, Iizuka Y, Uraba A, Inamori T, Asano S, Takahashi S, Hattori M, Naohara T, Ohira Y, Togawa A, Masuda Y, Okubo Y, Fumsawa S, Sakamoto S, Omine M, Mori M, Tatsumi E, Mizogouchi H. Laboratory findings and clinical courses of 33 patients with granular lymphocyte-proliferative disorders. Leukemia 1993; 7:782.PubMedGoogle Scholar
  49. 49.
    Zambello R, Trentin L, Ciccone E, Bulian P, Agostini C, Moretta A, Moretta L, Semenzato G. Phenotypic diversity of natural killer (NK) populations in patients with NK-type lymphoproliferative disease of granular lymphocytes. Blood 1993; 81:2381.PubMedGoogle Scholar
  50. 50.
    Cambiaggi A, Orengo AM, Meazza R, Sforzini S, Tazzari PL, Lauria F, Raspadori D, Zambello R, Semenzato G, Moretta L, Ferrini S. The natural killer-related receptor for HLA-C expressed on T cells from CD3+ lymphoproliferative disease of granular lymphocytes display either inhibitory or stimulatory function. Blood. In PressGoogle Scholar
  51. 51.
    Brenner KT, MacDonald HR, Cerottini J-C. Quantification and clonal isolation of cytolytic T lymphocyte precursors selectively infiltrating murine sarcoma virus-induced tumors. J Exp Med 1981; 154:362.CrossRefGoogle Scholar
  52. 52.
    Anichini A, Fossati G, Parmiani G. Clonal analysis of the cytolytic T cell response to human tumors. Immunol Today 1987; 8:385.CrossRefGoogle Scholar
  53. 53.
    Traversari C, Bruggen P van der, Luescher IF, Laurquin C, Chomez P, Van Pel A, De Plaen E, Amar-Costesec A, Boon T. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolyic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992; 176:1453.PubMedCrossRefGoogle Scholar
  54. 54.
    Wolfel T, Pel A van, Brichard V, Schneider J, Seliger B, Meyer zum Buschenfelde K-H, Boon T. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 1994; 24:759.PubMedCrossRefGoogle Scholar
  55. 55.
    Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 1994; 264:716.PubMedCrossRefGoogle Scholar
  56. 56.
    Ikeda H, Lethé B, Lehmann F, Van Baren N, Baurain J-F, De Smet C, Chambost H, Vitale M, Moretta A, Boon T, Coulie PG. Cytolytic T cells expressing NK inhibitory p58.2 recognize on a melanoma metastasis lacking HLA-Cw7 an antigen by a gene which is preferentially expressed in tumors. Immunity 1997; (in press).Google Scholar
  57. 57.
    Malnati MS, Peruzzi M, Parker KC, Biddison WE, Ciccone E, Moretta A, Long EO. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 1995; 267:1016.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • M. C. Mingari
    • 1
    • 2
  • M. Ponte
    • 2
  • C. Vitale
    • 2
  • F. Schiavetti
    • 2
  • S. Bertone
    • 2
  • L. Moretta
    • 2
    • 3
  1. 1.Dipartimento di Oncologia Clinica e SperimentaleCentro Biotecnologie AvanzateGenoaItaly
  2. 2.Istituto Scientifico Tumori and Centro Biotecnologie AvanzateGenoaItaly
  3. 3.Istituto di Patologia, Generale Università degli Studi di GenoaGenoaItaly

Personalised recommendations