Virchows Archiv B

, 49:209 | Cite as

Renal handling of inorganic mercury in mice

The early excretion phase following a single intravenous injection of mercuric chloride studied by the Silver Amplification method
  • Per Hultman
  • Sverker Eneström
  • Henning von Schenck


The early renal excretion of mercuric mercury was studied in male BALB/c mice between 15 seconds and 30 min following a single intravenous injection of 3 mg HgCl2/kg body weight. The cytochemical Silver Amplification method applied at the light and electron microscopical levels showed mercury to be excreted by glomerular filtration and reabsorbed by proximal tubular epithelial cells by means of adsorptive endocytosis. Mercury was rapidly demonstrated in the lysosomal vacuome of proximal tubular epithelial cells. No uptake was observed from the peritubular side, and there was no evidence of tubular secretion of mercury.

It is proposed that mercury is excreted in the form of mercury-protein complexes, assisted by the physiological proteinuria in mice, which is enhanced by mercury-induced damage to the glomerular structures.

Key words

Mercury Mice Cytochemistry Kidney tubules Proteinuria 


  1. Baumann K, Bode F, Ottosen PD, Madsen KM, Maunsbach AB (1980) Quantitative analysis of protein absorption in microperfused proximal tubules of the rat kidney. In: Maunsbach AB, Olsen ST, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London/New York/Toronto/Sydney/San Francisco, pp 291–301Google Scholar
  2. Bergstrand A, Friberg L, Odeblad E (1958) Localization of mercury in the kidneys after subcutaneous administration. Arch Ind Health 17: 253–256Google Scholar
  3. Berlin M (1979) Mercury. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals. Elsevier/North-Holland Biomedical Press, Amsterdam/New York/ Oxford, pp 503–539Google Scholar
  4. Berlin M, Gibson S (1963) Renal uptake, excretion, and retention of mercury. I. A study in the rabbit during infusion of mercuric chloride. Arch Environ Health 6: 617–625PubMedGoogle Scholar
  5. Bode F, Ottosen PD, Madsen KM, Maunsbach AB (1980) Does transtubular transport of intact protein occur in the kidney? In: Maunsbach AB, Olsen TS, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London/New York/Toronto/ Sydney/San Francisco, pp 385–295Google Scholar
  6. Bohman S-O, Maunsbach AB (1970) Effects on tissue fine structure of variations in colloid osmotic pressure of glutaraldehyde fixative. J Ultrastruct Res 30: 195–208PubMedCrossRefGoogle Scholar
  7. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  8. Cember H, Gallagher P, Faulkner A (1968) Distribution of mercury among blood fractions and serum proteins. Am Ind Hyg Assoc J 29: 233–237PubMedGoogle Scholar
  9. Christensen EI (1976) Rapid protein uptake and digestion in proximal tubule lysosomes. Kidney Int 10: 301–310PubMedCrossRefGoogle Scholar
  10. Christensen EI, Maunsbach AB (1980) Digestion of protein in lysosomes of proximal tubule cells. In: Maunsbach AB, Olsen TS, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London/New York/Toronto/Sydney/San Francisco, pp 341–359Google Scholar
  11. Christensen EI, Carone FAC, Rennke HG (1981) Effect of molecular charge on endocytic uptake of ferritin in renal proximal tubule cells. Lab Invest 44: 351–358PubMedGoogle Scholar
  12. Cikrt M, Heller J (1980) Renal tubular handling of203Hg2+ in the dog: A microinjection study. Environ Res 21: 308–313PubMedCrossRefGoogle Scholar
  13. Clarkson TW, Magos L (1970) Effect of 2,4-dinitrophenol and other metabolic inhibitors on the renal deposition and excretion of mercury. Biochem Pharmacol 19: 3029–3037PubMedCrossRefGoogle Scholar
  14. Danscher G (1981) Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry 71: 1–16PubMedCrossRefGoogle Scholar
  15. Danscher G (1982) Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds. Histochemistry 76: 281–293PubMedCrossRefGoogle Scholar
  16. Danscher G, Schröder HD (1979) Histochemical demonstration of mercury induced changes in rat neurons. Histochemistry 60: 1–7PubMedCrossRefGoogle Scholar
  17. Danscher G, Möller-Madsen B (1985) Silver amplification of mercury sulphide and selenide: A histochemical method for ilght and electron microscopic localization of mercury in tissue. J Histochem Cytochem 33: 219–228PubMedGoogle Scholar
  18. Dreisbach RH, Taugner R (1966) Renale „Stapelung“ und Ausscheidung von203Hg-Sublimat bei der Ratte. Nuclear Med 5: 421–435Google Scholar
  19. Eneström S, Hultman P (1984) Immune-mediated glomerulonephritis induced by mercuric chloride in mice. Experientia 40: 1234–1240PubMedCrossRefGoogle Scholar
  20. Gayer J, Graul EH, Hundeshagen H (1962) Die Lokalisierung des Transportes von Hg2+ -Ionen in der Niere durch Stopflow-Analyse. Klin Wochenschr 40: 953–955PubMedCrossRefGoogle Scholar
  21. Hoffsten PE, Hill CL, Klahr S (1975) Studies of albuminuria and proteinuria in normal mice and mice with immune complex glomerulonephritis. J Lab Clin Med 86: 920–930PubMedGoogle Scholar
  22. Hultman P, Eneström S (1983) Experimental Hg-nephropathy: correlation between histochemistry and analytical EM. J Ultrastruct Res 85: 1189–1190Google Scholar
  23. James TH (1939) The reduction of silver ions by hydroquinoe. J Am Chem 61: 648–652CrossRefGoogle Scholar
  24. James TH (1977) The theory of the photographic process. Macmillan Publ Co, New York, ch 13Google Scholar
  25. Jeppson JO, Laurell CB, Franzen B (1979) Agarose gel electrophoreses. Clin Chem 25: 629–638PubMedGoogle Scholar
  26. Kempson SA, Ellis BG, Price RG (1977) Changes in rat renal cortex, isolated plasma membranes, and urinary enzymes following the injection of mercuric chloride. Chem Biol Interact 18: 217–234PubMedCrossRefGoogle Scholar
  27. Lippman RW, Finkle RD, Gilette D (1951) Effect of proteinuria on localization of radiomercury in rat kidney. J P Proc Soc Exp Biol Med 77: 68–70Google Scholar
  28. Madsen KM (1980) Mercury accumulation in kidney lysosomes of proteinuric rats. Kidney Int 18: 445–453PubMedCrossRefGoogle Scholar
  29. Madsen M, Hansen HC (1980) Subcellular distribution of mercury in the rat kidney cortex after exposure to mercuric chloride. Toxicol Appl Pharmacol 54: 443–453PubMedCrossRefGoogle Scholar
  30. Mambourg AM, Raynaud C (1965) Etude, a l’aide d’isotopes radioactifs, du mechanisme de l’excretion urinaire du mercure chez le lapin. Rev Franc Etudes Clin Biol 10: 414–418PubMedGoogle Scholar
  31. Maunsbach AB (1966a) Absorption of I125-labeled homologous albumin by rat kidney proximal tubule cells. A study of microperfused single proximal tubules by electron microscopic autoradiography and histochemistry. J Ultrastruct Res 15: 197–241PubMedCrossRefGoogle Scholar
  32. Maunsbach AB (1966b) The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. 1. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J Ultrastruct Res 15: 242–282PubMedCrossRefGoogle Scholar
  33. Maunsbach AB (1966c) Observations on segmentation of the proximal tubule in rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J Ultrastruct Res 16: 239–258PubMedCrossRefGoogle Scholar
  34. Maunsbach AB (1976) Cellular mechanisms of tubular protein transport. In: Thurau K (ed) Kidney and urinary physiology II, Int Rev Sci, Physiol, Series 2, vol 11. University Park Press, Baltimore, pp 145–167Google Scholar
  35. McDowell EM, Nagle RB, Zalme RC, McNeil JS, Flamenbaum W, Trump BF (1976) Studies on the pathophysiology of acute renal failure. Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch [Cell Pathol] 22: 173–196Google Scholar
  36. Miller F, Palade GE (1964) Lytic activities in renal protein absorption droplets. An electron microscopical cytochemical study. J Cell Biol 23: 519–551PubMedCrossRefGoogle Scholar
  37. Nordberg GF, Skerfving S (1974) Metabolism In: Friberg L, Vostal D (eds) Mercury in the environment. CRC Press, Cleveland, Ohio [USA], pp 29–91Google Scholar
  38. Pesce AJ, Hanenson I, Sethi K (1977) Beta2 microgloburinuria in a patient with nephrotoxicity secondary to mercuric chloride ingestion. Clin Toxicol 11: 309–315PubMedCrossRefGoogle Scholar
  39. Phillips R, Cember H (1969) The influence of body burden of radiomercury on radiation dose. J Occup Med 11: 170–174PubMedCrossRefGoogle Scholar
  40. Reuter AM, Hamoir G, Marchand R, Kennes F (1968) Isolation and properties of a mouse serum prealbumin excreted in urine. Eur J Biochem 5: 233–238PubMedCrossRefGoogle Scholar
  41. Rhodin J (1958) Anatomy of kidney tubules. Int Rev Cytol 7: 485–534Google Scholar
  42. Rodin AE, Crowson CN (1962) Mercury nephrotoxicity in the rat. 1. Factor influencing the localization of the tubular lesions. Am J Pathol 61: 297–313Google Scholar
  43. Rothstein A (1973) Mercaptans, the biological targets for mercurials. In: Miller MW, Clarkson TW (eds) Mercury, mercurials and mercaptans. Charles C Thomas Publisher, Springfield/ Illinois [USA], pp 68–166Google Scholar
  44. Staemmler M (1956) Die akuten Nephrosen. I. Mitteilung. Die Sublimatnephrose. Virchows Arch [Pathol Anat] 328: 1–17CrossRefGoogle Scholar
  45. Straus W (1962) Colonmetric investigation of the uptake of an intravenously injected protein (horseradish peroxidase) by rat kidney and effects of competition by egg white. J Cell Biol 12: 231–246PubMedCrossRefGoogle Scholar
  46. Timm F (1958) Zur Histochemie der Schwermetalle. Das Sulfid-Silberverfahren. Dtsch Z Ges Gerichtl Med 46: 706–711CrossRefGoogle Scholar
  47. Vostal J, Heller J (1968) Renal excretory mechanisms of heavy metals. Transtubular transport of heavy metal ions in the avian kidney. Environ Res 2: 1–10PubMedCrossRefGoogle Scholar
  48. Wöckel W, Stegner H-E, Jänisch W (1961) Zum topochemischen Quecksilbernachweis in der Niere bei experimenteller Sublimatvergiftung. Virchows Arch [Pathol Anat] 334: 503–509CrossRefGoogle Scholar
  49. Zahne RC, McDowell EM, Nagle RB, McNeil JS, Flamenbaum W, Trump BF (1976) Studies on pathophysiology of acute renal failure. II. A histochemical study of the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch [Cell Pathol] 22: 197–216Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Per Hultman
    • 1
  • Sverker Eneström
    • 1
  • Henning von Schenck
    • 2
  1. 1.Departments of Pathology ILinköping UniversityLinköpingSweden
  2. 2.Clinical ChemistryLinköping UniversityLinköpingSweden

Personalised recommendations