Comparison of two Bernoulli processes by multiple stage sampling using Bayesian decision theory

  • Armand V. Smith


Loss Function Prior Distribution Sequential Design Computational Formula Equal Division 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. N. Bradt, S. M. Johnson and S. Karlin, “On sequential designs for maximizing the sum ofn observations,”Ann. Math. Statist., 27 (1956), 1060–1074.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Chernoff, “Sequential designs of experiments,”Ann. Math. Statist., 30 (1959), 755–770.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    C. W. Dunnett, “Statistical theory of drug screening,”Proceedings of the Symposium on Quantitative Methods in Pharmacology, Biometric Society, University of Leyden, (1960), 212–213.Google Scholar
  4. [4]
    H. Raiffa and R. Schlaifer, “Applied Statistical Decision Theory,” Graduate School of Business Administration, Harvard University, Boston, 1961.Google Scholar
  5. [5]
    H. E. Robbins, “Some aspects of the sequential design of experiments,”Bulletin of the American Mathematical Society, 58 (1952), 527–535.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. J. Taylor and H. A. David, “A multi-stage procedure for the selection of the best of several populations,”J. Amer. Statist. Ass., 57 (1962), 785–796.CrossRefMathSciNetGoogle Scholar
  7. [7]
    W. Vogel, “A sequential design for the two armed bandit,”Ann. Math. Statist., 31 (1960), 430–443.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Wald,Sequential Analysis, John Wiley and Sons, New York, 1947.MATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 1967

Authors and Affiliations

  • Armand V. Smith
    • 1
  1. 1.Virginia Polytechnic InstituteUniversity of CincinnatiCincinnatiUSA

Personalised recommendations