Advertisement

Association schemes of new types and necessary conditions for existence for regular and symmetrical PBIB designs with those association schemes

  • Kumaichi Kusumoto
Article

Keywords

Incidence Matrix Characteristic Root Characteristic Matrix Association Scheme Balance Incomplete Block Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. C. Bose and M. Mesner, “On linear associative algebras corresponding to association schemes of partially balanced designs,”Ann. Math. Statist., 30 (1959), 21–38.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    W. S. Connor and W. R. Clatworthy, “Some theorems for partially balanced designs,”Ann. Math. Statist., 25 (1954), 100–112.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    B. W. Jones,The Arithmetic Theory of Quadratic Forms, John Wiley & Sons, Inc., 1950.Google Scholar
  4. [4]
    D. Raghavarao, “A generalization of group divisible designs,”Ann. Math. Statist., 31 (1960), 756–771.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. Raghavarao and K. Chandrasekhararao, “Cubic designs,”Ann. Math. Statist., 35 (1964), 389–397.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    B. V. Shah, “On a generalization of the Kronecker product designs,”Ann. Math. Statist., 30 (1959), 48–54.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. K. Tharthare, “Right angular desings,”Ann. Math. Statist., 34 (1963), 1057–1067.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. n. Vartak, “On an application of Kronecker product of matrices to statistical designs,”Ann. Math. Statist., 26 (1955), 420–436.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. N. Vartak, “The non-existence of certain PBIB designs,”Ann. Math. Statist., 30 (1959), 1051–1062.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    S. Yamamoto and Y. Fujii, “Analysis of partially balanced incomplete block designs,”J. Sci. Hiroshima Univ., Ser. A-I 27 (1963), 119–135.MATHMathSciNetGoogle Scholar
  11. [11]
    S. S. Schrikhande, D. Raghavarao and S. K. Tharthare, “Non-existence of some unsymmetrical partially balanced incomplete block designs,”Canad. J. Math., 15 (1963), 686–701.MathSciNetGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 1967

Authors and Affiliations

  • Kumaichi Kusumoto
    • 1
  1. 1.Wakayama Medical CollegeWakayamaJapan

Personalised recommendations