Minimax invariant prediction regions

  • Goro Ishii


Transformation Group Multivariate Normal Distribution Range Space Prediction Region Wishart Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. W. Barankin, “Sufficient parameters: Solution of the minimal dimensionality problem,”Ann. Inst. Statist. Math., 12 (1960), 91–118.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    D. A. S. Fraser and I. Guttman, “Tolerance regions,”Ann. Math. Statist., 27 (1956), 162–179.CrossRefMathSciNetGoogle Scholar
  3. [3]
    I. Guttman, “Optimum tolerance regions and power when sampling from some non normal universes,”Ann. Math. Statist., 30 (1959), 926–938.CrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Ishii and H. Kudo, “Tolerance region for missing variables in linear statistical model,”J. Math. Osaka City Univ., 14 (1963), 117–130.MathSciNetGoogle Scholar
  5. [5]
    H. Kudo, “On minimax invariant estimates of the transformation parameter,”Natur. Sci. Rep. Ochanomizu Univ., 6 (1955), 31–73.MathSciNetGoogle Scholar
  6. [6]
    M. Okamoto, “Sufficiency and invariance,” (in Japanese),S. R. Osaka S. A., 8 (1964), 227–231.Google Scholar
  7. [7]
    C. M. Stein, “Some problems in multivariate analysis,” Part I, (unpublished), 1956.Google Scholar
  8. [8]
    R. A. Wijsman, “Random orthogonal transformations and their use in some classical distribution problems in multivariate analysis,”Ann. Math. Statist., 28 (1957), 415–423.CrossRefMathSciNetGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 1968

Authors and Affiliations

  • Goro Ishii
    • 1
  1. 1.Osaka City UniversityOsakaJapan

Personalised recommendations