Nonadiabaticity in the photoinduced electron transfer reactions of metal complexes

  • S. Rajagopal
  • C. Srinivasan
  • G. Allen Gnanaraj


The rate of electron transfer (ET) in a variety of chemical and biological processes is influenced by factors like the free energy change (†G), the donor-acceptor electronic coupling and the medium. The effect of donor-acceptor electronic coupling on the rate of photoinduced intermolecular electron transfer is considered by taking Ru(II) and Cr(III) metal complexes in the excited state as electron acceptors and organic compounds as electron donors. The electronic coupling between the donor and acceptors depends strongly on donor-acceptor distance. The electron transfer distance is varied by introducing alkyl groups of different sizes either on the bipyridine ligand of the metal complex or on the quencher. The semiclassical theory of electron transfer expresses kET as the product of a nuclear and an electronic transmission coefficient (K n andK el respectively) and an effective nuclear-vibration frequency (v n),k ET =v nKel, Kn. The electron transfer reaction becomes nonadiabatic if the donor-acceptor distance is long. The change of electron transfer mechanism from adiabatic to nonadiabatic due to the introduction of bulky groups is explained in terms of semiclassical theory and from the temperature-dependence study of photoinduced electron transfer reactions of metal complexes.


Metal complexes photoinduced electron transfer nonadiabaticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen Gnanaraj G, Rajagopal S, Srinivasan C and Pitchumani K 1993Tetrahedron 49 4721CrossRefGoogle Scholar
  2. Caspar J V and Meyer T J 1983Inorg. Chem. 22 2442CrossRefGoogle Scholar
  3. Durham B, Caspar J V, Nagle J K and Meyer T J 1982J. Am. Chem. Soc. 104 4803CrossRefGoogle Scholar
  4. Fox M A and Chanon M 1988Photoinduced electron transfer (Amsterdam: Elsevier)Google Scholar
  5. Isied S S, Vassilian A, Wishart J F, Creutz C, Schwarz H A and Sutin N 1988J. Am. Chem. Soc. 110 635CrossRefGoogle Scholar
  6. Jamieson M A, Serpone N and Hoffman M Z 1981Coord. Chem. Rev. 39 121CrossRefGoogle Scholar
  7. Jones G I I and Chatterjee S 1988J. Phys. Chem. 92 6862CrossRefGoogle Scholar
  8. Kalyanasundaram K 1982Coord. Chem. Rev. 46 159CrossRefGoogle Scholar
  9. Kavarnos G J and Turro N J 1986Chem. Rev. 86 401CrossRefGoogle Scholar
  10. Kitamura N, Okano S and Tazuke S 1982Chem. Phys. Lett. 90 13CrossRefGoogle Scholar
  11. Kitamura N, Rajagopal S and Tazuke S 1987J. Phys. Chem. 91 3767CrossRefGoogle Scholar
  12. MacQueen D B and Schanze K S 1991J. Am. Chem. Soc. 113 7470CrossRefGoogle Scholar
  13. Marcus R A and Siders P 1982J. Phys. Chem. 86 622CrossRefGoogle Scholar
  14. Marcus R A and Sutin N 1985Biochim. Biophys. Acta 811 265Google Scholar
  15. McLendon G 1988Acc. Chem. Res. 21 160CrossRefGoogle Scholar
  16. Rajagopal S, Allen Gnanaraj G, Mathew A and Srinivasan C 1992J. Photochem. Photobiol. A69 83CrossRefGoogle Scholar
  17. Rajagopal S, Rajendran S, Suthakaran R and Srinivasan C 1991Indian J. Chem. A30 765Google Scholar
  18. Rajagopal S and Vijayalakshmi N 1991Indian J. Chem. A30 604Google Scholar
  19. Rau H, Frank R and Greiner G 1986J. Phys. Chem. 90 2476CrossRefGoogle Scholar
  20. Sandrini D, Maestri M, Belser P, von Zelewsky A and Balzani V 1985J. Phys. Chem. 89 3675CrossRefGoogle Scholar
  21. Shorter J 1982Correlation analysis of organic reactivity (New York: John Wiley & Sons)Google Scholar

Copyright information

© Indian Academy of Sciences 1994

Authors and Affiliations

  • S. Rajagopal
    • 1
  • C. Srinivasan
    • 2
  • G. Allen Gnanaraj
    • 1
  1. 1.School of ChemistryMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of Materials ScienceMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations