Advertisement

Transition Metal Chemistry

, Volume 17, Issue 5, pp 369–373 | Cite as

Kinetics of the solvolysis of chloropentacyanocobaltate(III) ions in water +t-butanol mixtures

  • Kamal H. M. Halawani
  • Cecil F. Wells
Full Papers

Summary

Rates of the solvolysis of [Co(CN)5Cl]3− ions have been determined in mixtures of water with the hydrophobic alcohol, t-butanol over a range of temperatures. No linear correlation of log k with the reciprocal of the dielectric constant is found, suggesting that changes in solvent structure are an important factor influencing these rates. This result is confirmed by the good correlation found for the extrema in the enthalpy and entropy of activation with the extrema in the physical properties of the mixtures influenced by changes in solvent structure. The application of a free energy cycle to the loss of the chloride ion from the Co3+ in the transition state shows that [Co(CN)5]2− in the transition state is stabilised in the mixtures relative to [Co(CN)5Cl]3− in the initial state.

Keywords

Transition State Solvolysis Solvent Structure Transition Meet Dielectric Continuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    C. N. Elgy and C. F. Wells,J. Chem. Soc. Dalton Trans., 2405 (1980); 1617 (1982);J. Chem. Soc. Faraday Trans. 1,79, 2367 (1983).Google Scholar
  2. (2).
    I. M. Sidahmed and C. F. Wells,J. Chem. Soc. Dalton Trans., 1035 (1983); 1969 (1984); I. M. Sidahmed and A. M. Ismail,Transition Met. Chem.,11, 288 (1986).Google Scholar
  3. (3).
    K. H. Halawani and C. F. Wells,J. Chem. Res., (S) 58, (M) 0501 (1988).Google Scholar
  4. (4).
    D. A. Bush and C. F. Wells,J. Chem. Soc. Farad. Trans.,86, 941 (1990).CrossRefGoogle Scholar
  5. (5).
    I. M. Sidahmed and A. M. Ismail.Transition Met. Chem.,12, 332, 449 (1987).CrossRefGoogle Scholar
  6. (6).
    G. M. El-Subruiti, I. M. Sidahmed and C. F. Wells,Int. J. Chem. Kin.,22, 891 (1990).CrossRefGoogle Scholar
  7. (7).
    K. H. Halawani and C. F. Wells,J. Chem. Soc. Farad. Trans. I,85, 2999 (1989);J. Solution Chem.,11, 1073 (1990).CrossRefGoogle Scholar
  8. (8).
    K. Nakanishi,Bull. Chem. Soc. Jpn,33, 793 (1960).CrossRefGoogle Scholar
  9. (9).
    M. J. Blandamer,Introduction to Chemical Ultrasonics, Academic Press, London, 1973, Chap. 11.Google Scholar
  10. (10).
    A. E. Dunstan,Zeit. Phys. Chem.,49, 590 (1904);51, 732 (1905).Google Scholar
  11. (11).
    G. Wada and S. Umeda,Bull. Chem. Soc. Jpn,35, 646 (1962).CrossRefGoogle Scholar
  12. (12).
    W. E. Jones, L. R. Carey and T. W. Swaddle,Can. J. Chem.,50, 2739 (1972); D. A. Palmer and H. Kelm,Inorg. Chem.,16, 3139;Coord. Chem.,36, 39 (1981); G. Daffner, D. A. Palmer and H. Klem,Inorg. Chim. Acta,45, L275 (1980); G. A. Lawrance and S. Suvichittanont,Austral. J. Chem.,33, 273 (1980);Inorg. Chim. Acta,44, L61 (1980); M. J. Sisley and T. W. Swaddle,Inorg. Chem.,20, 2799 (1981); G. A. Lawrance,Inorg. Chem.,21, 3687 (1982); Y. Kitamara and R. van Eldik, Ber.Bunsen Ges. Phys. Chem.,88, 418 (1984); G. A. Lawrance, K. Schneider and R. van Eldik,Inorg. Chem.,23, 392 (1984); N. J. Curtis and G. A. Lawrance,Inorg. Chem.,25, 1033 (1986); P. A. Lay,Inorg. Chem.,26, 2144 (1987); N. J. Curtis, G. A. Lawrance and R. van Eldik,Inorg. Chem.,28, 329 (1989).CrossRefGoogle Scholar
  13. (13).
    W. G. Jackson and A. M. Sargeson,Inorg. Chem.,17, 1344 (1978); W. G. Jackson and C. M. Begbie,Inorg. Chim. Acta,60, 115 (1982).Google Scholar
  14. (14).
    C. F. Wells,J. Chem. Soc. Farad. Trans. 1,73, 1851 (1977).CrossRefGoogle Scholar
  15. (15).
    A. Haim and W. K. Wilmarth,Inorg. Chem.,1, 573, 583 (1962); A. Haim, R. J. Grassi and W. K. Wilmarth,Adv. Chem.,49, 31 (1966);Inorg. Chem.,6, 237 (1967); R. Barca, J. Ellis, M.-S. Tao and W. K. Wilmarth,Inorg. Chem.,6, 243 (1967); J. E. Byrd and W. K. Wilmarth,Inorg. Chim. Acta Rev.,5, 7 (1971).CrossRefGoogle Scholar
  16. (16).
    A. Haim,Inorg. Chem.,21, 2887 (1981).CrossRefGoogle Scholar
  17. (17).
    M. G. Burnett and M. W. Gilfillan,J. Chem. Soc. Dalton Trans., 1578 (1981); M. H. M. Abu-El-Wafa and M. G. Burnett,J. Chem. Soc. Chem. Comm. 833 (1983); M. H. M. Abou-El-Wafa, M. G. Burnett and J. F. McCullagh,J. Chem. Soc. Dalton Trans., 1059, 2311 (1987).Google Scholar
  18. (18).
    D. A. Palmer and H. Kelm,Zeit. anorg. allg. Chem.,450, 50 (1979).CrossRefGoogle Scholar
  19. (19).
    K. H. M. Halawani and C. F. Wells,J. Chem. Soc. Farad. Trans. I,86, 1791 (1990).CrossRefGoogle Scholar
  20. (20).
    K. J. Laidler and P. A. Landskroener,Trans. Farad. Soc.,52, 200 (1956).CrossRefGoogle Scholar
  21. (21).
    T. L. Broadwater and R. L. Kay,J. Phys. Chem.,74, 3802 (1970).CrossRefGoogle Scholar
  22. (22).
    A. C. Brown and D. J. G. Ives,J. Chem. Soc., 1608 (1962).Google Scholar
  23. (23).
    G. Åkerlöf,J. Amer. Chem. Soc.,54, 4125 (1932).CrossRefGoogle Scholar
  24. (24).
    E. Grunwald and S. Winstein,J. Amer. Chem. Soc.,70, 846, (1948).CrossRefGoogle Scholar
  25. (25).
    G. S. Groves and C. F. Wells,J. Chem. Soc. Farad. Trans. I 81, 2475 (1985).CrossRefGoogle Scholar
  26. (26).
    J. Kenttämaa, E. Tommila and M. Martti,Annal. Acad. Scient. Fennicae, No. 93 (1959).Google Scholar
  27. (27).
    C. F. Wells,Trans. Faraday Soc.,66, 204 (1970);J. Chem. Soc., Farad. Trans. I,70, 694 (1974).CrossRefGoogle Scholar
  28. (28).
    H. S. Frank and M. W. Evans,J. Chem. Phys.,13, 507 (1945); H. S. Frank and W.-Y. Wen,Discussion Farad. Soc.,24, 133 (1957); G. Nemethy and H. A. Sheraga,J. Chem. Phys.,36, 3382, 3401 (1962); N. Laiden and G. Nemethy,J. Phys. Chem.,74, 3501, (1970).CrossRefGoogle Scholar
  29. (29).
    J. H. Andreae, P. D. Edmonds and J. F. McKellar,Acustica,15, 74 (1965).Google Scholar
  30. (30).
    G. S. Groves and C. F. Wells,J. Chem. Soc. Farad. Trans. I,78, 619 (1982); A. E. Eid and C. F. Wells,J. Chem. Soc. Farad. Trans. I,77, 1621 (1981);79, 253 (1983);81, 4101 (1985);82, 1643 (1986);Transition. Met. Chem.,10, 223 (1985);Int. J. Chem. Kin.,18, 215, (1986); G.S. Groves, A.F.M. Nazer and C.F. Wells,J. Chem. Soc. Farad. Trans. I,83, 1119 (1987).CrossRefGoogle Scholar
  31. (31).
    C.F. Wells,J. Chem. Soc. Farad. Trans. I,72, 601, (1976);Australian J. Chem.,36, 1739 (1983).CrossRefGoogle Scholar
  32. (32).
    J. Juillard and C. Tissier,Electrochim. Acta,27, 123 (1982).CrossRefGoogle Scholar
  33. (33).
    T. A. Clune, D. Feakins and P. J. McCarthy,J. Electroanal. Chem.,84, 199 (1977).CrossRefGoogle Scholar
  34. (34).
    Y. Pointud, J. Juillard, J.-P. Morel and L. Avedikan,Electrochim. Acta,19, 229 (1974).CrossRefGoogle Scholar
  35. (35).
    C. F. Wells,Thermochim. Acta,132, 127, 141 (1988).CrossRefGoogle Scholar
  36. (36).
    C. F. Wells,J Chem. Soc. Farad. Trans. I,80, 2445 (1984).CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Kamal H. M. Halawani
    • 1
  • Cecil F. Wells
    • 1
  1. 1.School of ChemistryUniversity of Birmingham, EdgbastonBirminghamUK

Personalised recommendations