Advertisement

Geosciences Journal

, 10:67 | Cite as

230Th/234U dating of Holocene mollusk shells from Jeju Island, Korea, by multiple collectors inductively coupled plasma mass spectrometry

  • C. -S. Cheong
  • M. S. Choi
  • B. K. Khim
  • Y. K. Sohn
  • S. -T. Kwon
Article

Abstract

The230Th/234U ages of fossil mollusk shells collected from the Sinyangri and Hamori Formations, the youngest stratigraphic units on Jeju Island, Korea, were estimated using multiple collectors inductively coupled plasma mass spectrometry. Seven aragonite shells yielded230Th/234U ages ranging from 3434±40 yr to 4980±33 yr (2σm), in concordance with radiocarbon ages for samples containing little232Th. Our data suggest that the230Th/234U method can be a potentially useful tool for dating Holocene mollusks, provided that there is no evidence for severe recrystallization, cementation, and considerable amount of common thorium. An early uptake of uranium immediately after burial and subsequent maintenance of closed system for uranium and thorium can be assumed for our mollusk samples. This study, together with previous radiocarbon and optical dating results, demonstrates that the Hamori Formation where human footprints were recently discovered deposited during the middle Holocene.

Key words

mollusk shells 230Th/234U ages Jeju Island MC ICP-MS Holocene 

References

  1. Aggarwal, J.K., Sheppard, D., Mezger, K. and Pernicka, E., 2003, Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: origin of boron in the Ngawha geothermal system, New Zealand. Chemical Geology, 199, 331–342.CrossRefGoogle Scholar
  2. Bard, E., Hamelin, B. and Fairbanks, R.G., 1990a, U−Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature, 346, 456–458.CrossRefGoogle Scholar
  3. Bard, E., Hamelin, B., Fairbanks, R.G. and Zindler, A., 1990b, Calibration of the14C timescale over the past 30,000 years using mass spectrometric U−Th ages from Barbados corals. Nature, 354, 405–410.CrossRefGoogle Scholar
  4. Bourdon, B., Henderson, G.M., Lundstrom, C.C. and Turner, S.P., 2003, Uranium-series geochemistry. Reviews in mineralogy and geochemistry, 52, Geochemical Society, Mineralogical Society of America, 656 p.Google Scholar
  5. Chen, J.H., Edwards, R.L. and Wasserburg, G.J., 1986, U-238, U-234, and Th-232 in seawater. Earth and Planetary Science Letters, 80, 241–251.CrossRefGoogle Scholar
  6. Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A. and Asmerom, Y., 2000, The half-lives of uranium-234 and thorium-230. Chemical Geology, 169, 17–33.CrossRefGoogle Scholar
  7. Cheong, C.-S., Choi, J.-H., Sohn, Y.K. and Jeong, G.Y., 2005, Optical dating of Holocene volcanism in Jeju Island, Korea, LED2005 abstract volume, 41.Google Scholar
  8. Cho, D.-L., Park, K.-H., Jin, J.-H., and Hong, W., 2005, Age constraints on human footmarks in Hamori Formation, Jeju Island Korea. Journal of Petrological Society of Korea, 14, 149–156 (in Korean with English abstract).Google Scholar
  9. Deschamps, P., Doucelance, R., Ghaleb, B. and Michelot, J.-L., 2003, Further investigations on optimized tail correction and high-precision measurement of uranium isotopic ratios using multi-collector ICP-MS. Chemical Geology, 210, 141–160.CrossRefGoogle Scholar
  10. Esat, T.M., McCulloch, M.T., Chappell, J., Pillars, B. and Omura, A., 1999, Rapid fluctuations in sea level recorded at Huon peninsula during the penultimate deglaciation. Science, 283, 197–201.CrossRefGoogle Scholar
  11. Hamelin, B., Bard, E., Zindler, A. and Fairbanks, R.G., 1991,234U/238U mass spectrometry of corals: How accurate is the U−Th age of the last interglacial period. Earth and Planetary Science Letters, 106, 169–180.CrossRefGoogle Scholar
  12. Han, S.J., Yoon, H.I. and Park, B.K., 1987, Nearshore sedimentary environments of the Sinyangri Formation in Cheju Island, Korea. Journal of the Korean Society of Oceanography, 22, 1–8.Google Scholar
  13. Ivanovich, M. and Harmon, R.S., 1992, Uranium-series disequilibrium: Applications to earth, marine, and environmental sciences. Second edition, Clarendon Press, Oxford, 910 p.Google Scholar
  14. Kaufman, A., Broecker, W.S., Ku, T.-L., and Thurber, D.L., 1971, The status of U-series methods of dating mollusks. Geochimica et Cosmochimica Acta, 35, 1155–1183.CrossRefGoogle Scholar
  15. KIGAM, 2005, Age dating of human footprints in the southern coast of Jeju Island, Namjeju-gun.Google Scholar
  16. Kim, B.K., 1969, A stratigraphic and paleontologic study of the Sinyangri Formation in the vicinity of Sinyangri and Gosanri, the Jeju Island. Journal of Geological Society of Korea, 5, 103–121.Google Scholar
  17. Kim, K.H., Tanaka, T., Nakamura, T., Nagao, K., Youn, J.S., Kim, K.R. and Yun, M.Y., 1999, Paleoclimatic and chronostratigraphic interpretations from strontium, carbon and oxygen isotopic ratios in molluscan fossils of Quaternary Seoguipo and Sinyangri Formations, Cheju Island, Korea. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 219–235.CrossRefGoogle Scholar
  18. Ku, T.L., 1976, The uranium-series methods of age determination. Annual Review of Earth and Planetary Science, 4, 347–379.CrossRefGoogle Scholar
  19. Ku, T.L., 2000, Uranium-Series Methods. In: Noller, J.S., Sowers, J.M. and Lettis, W.R. (ed.), Quaternary Geochronology: Methods and Applications, AGU Reference Shelf 4, 101–114.Google Scholar
  20. Li, W.-X., Lundberg, J., Dickin, A.P., Ford, D.C., Schwarcz, H.P., McNutt, R. and Williams, D., 1989, High precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature, 339, 534–536.CrossRefGoogle Scholar
  21. Luo, S. and Ku, T.L., 1991, U-series isochron dating: A generalized method employing total sample dissolution. Geochimica et Cosmochimica Acta, 55, 555–564.CrossRefGoogle Scholar
  22. Luo, X., Rehkämper, M., Lee, D.C. and Halliday, A.N., 1997, High precision230Th/232Th and234U/238U measurements using energyfiltered ICP magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 171, 105–117.CrossRefGoogle Scholar
  23. Pietruszka, A.J., Carlson, R.W. and Houri, E.H., 2002, Precise and accurate measurement of226Ra−230Th−238U disecuilibria in volcanic rocks using plasma ionization multicollector mass spectrometry. Chemical Geology, 188, 171–191.CrossRefGoogle Scholar
  24. Rubin, K.H., 2001, Analysis of232Th/230Th in volcanic rocks: a comparison of thermal ionization mass spectrometry and other methodologies. Chemical Geology, 175, 723–750.CrossRefGoogle Scholar
  25. Schramm, A., Stein, M. and Goldstein, S.L., 2000, Calibration of the14C time scale to >40 ka by234U−230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters, 175, 27–40.CrossRefGoogle Scholar
  26. Shen, C.-C., Edwards, R.L., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S.E., and Edmonds, H.N., 2002, Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology, 185, 165–178.CrossRefGoogle Scholar
  27. Slowey, N.C., Henderson, G.M. and Curry, W.B., 1996, Direct U−Th dating of marine sediments from the two most recent interglacial periods. Nature, 383, 242–244.CrossRefGoogle Scholar
  28. Sohn, Y.K. and Park, K.H., 2004, Early-stage volcanism and sedimentation of Jeju Island revealed by the Sagye borehole, SW Jeju Island, Korea. Geosciences Journal, 8, 73–84.CrossRefGoogle Scholar
  29. Sohn, Y.K. and Park, K.H., 2005, Composite tuff ring/cone complexes in Jeju Island, Korea: possible consequences of substrate collapse and vent migration. Journal of Volcanology and Geothermal Research, 141, 157–175.CrossRefGoogle Scholar
  30. Sohn, Y.K., Park, J.B., Khim, B.K., Park, K.H., and Koh, G.W., 2002, Stratigraphy, petrochemistry and Quaternary depositional record of the Songaksan tuff ring, Jeju Island, Korea, Journal of Volcanology and Geothermal Research, 119, 1–20.CrossRefGoogle Scholar
  31. Steiger, R.H. and Jäger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.CrossRefGoogle Scholar
  32. Taylor, S.R. and McLennan, S.M., 1981, The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society, A301, 381–399.CrossRefGoogle Scholar
  33. Thurber, D.L., 1962, Anomalous234U/238U in nature. Journal of Geophysical Research, 67, 4518–4520.CrossRefGoogle Scholar
  34. Wagner, G.A., 1998, Age determination of young rocks and artifacts, Springer, Heidelberg, 466 p.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • C. -S. Cheong
    • 1
  • M. S. Choi
    • 2
  • B. K. Khim
    • 3
  • Y. K. Sohn
    • 4
  • S. -T. Kwon
    • 5
  1. 1.Division of Isotope GeoscienceKorea Basic Science InstituteDaejeonKorea
  2. 2.Department of Oceanography & Ocean Environmental SciencesChungnam National UniversityDaejeonKorea
  3. 3.Department of Marine SciencePusan National UniversityBusanKorea
  4. 4.Department of Earth and Environmental Sciences and RINSGyeongsang National UniversityJinjuKorea
  5. 5.Department of Earth System SciencesYonsei UniversitySeoulKorea

Personalised recommendations