Chinese Science Bulletin

, 45:2004 | Cite as

Monte Carlo simulation of thermodynamic properties for two-dimensional Lennard-Jones fluids



Canonical ensemble Monte Carlo simulations have been carried out to investigate the thermodynamic properties of two-dimensional fluids subjected to truncated Lennard-Jones 12-6 potential. The simulations of thermodynamic states sweep across liquid-vapor regime over a wide range of thermodynamic conditions. Simulated isotherms behave van der Waals loop-like characteristics in the liquid-vapor phase-transition region. It suggests a continuous isothermal phase transition in the case of micro system, in which the system size prohibits phase separation. Two-dimensional dimensionless van der Waals equation of states has been obtained from theoretical analysis. By fitting simulated data to this equation, temperature-dependent parameters in the equation have been determined.


Monte Carlo simulation thermodynamic properties isotherm liquid-vapor transition 


  1. 1.
    Tien, C. L., Chen, G., Challenges in microscale conductive and radiative heat transfer, ASME Journal of Heat Transfer, 1994, 116: 799.CrossRefGoogle Scholar
  2. 2.
    Majumdar, A., Microscale thermal science and engineering, Thermal Engineering, ASME, Tech. Briefs, Heat Transfer Division, 1994, 3.Google Scholar
  3. 3.
    Carey, V. P., Modeling of microscale transport in multiphase systems, Heat Transfer 1998, Proceedings of 11th IHTC, Kyongju, Korea, Aug. 23–28, 1998, 1: 23.Google Scholar
  4. 4.
    Kotake, S., Molecular mechanical engineering, JSME International Journal B, 1995, 38: 1.Google Scholar
  5. 5.
    Kotake, S., Future aspects of molecular heat and mass transfer studies, Thermal Science and Engineering, The Heat Transfer Society of Japan, 1994, 2(1): 12.Google Scholar
  6. 6.
    Kotake, S., Thermo-fluid engineering with quantum, molecular and continuum dynamics, Thermal Science and Engineering, The Heat Transfer Society of Japan, 1995, 3(3): 21.Google Scholar
  7. 7.
    Rivera, Y. D., Weber, C., Lopez, G. E., Monte Carlo studies of heat capacity anomalies in two-dimensional nanoclusters, J. Chem. Phys., 1995, 103(24): 10627.CrossRefGoogle Scholar
  8. 8.
    Allen, M. P., Tildesley, D. J., Computer Simulation of Liquids, Oxford: Clarendon Press, 1987.Google Scholar
  9. 9.
    Panagiotopoulos, A. Z., Current advances in Monte Carlo methods, Fluid Phase Equilibria, 1996, 116: 257.CrossRefGoogle Scholar
  10. 10.
    Barker, J. A., Henderson, D., Abraham, F. F., Phase diagram of the two-dimensional Lennard-Jones system, evidence for first-order transitions, Physica A, 1981, 106: 226.CrossRefGoogle Scholar
  11. 11.
    Singh, R. R., Pitzer, K. S., de Pablo, J. J., Monte Carlo simulation of phase equilibria for the two-dimensional Lennard-Jones fluid in the Gibbs ensemble, J. Chem. Phys., 1990, 92(9): 5463.CrossRefGoogle Scholar
  12. 12.
    Smit, B., Frenkel, D., Vapor-liquid equilibria of the two-dimensional Lennard-Jones fluid(s), J. Chem. Phys., 1991, 94(8): 5663.CrossRefGoogle Scholar
  13. 13.
    Panagiotopoulos, A. Z., Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Mol. Phys., 1987, 61(4): 813.CrossRefGoogle Scholar
  14. 14.
    Alder, B. J., Wainwright, T. E., Phase transition in elastic disks, Phys. Rev., 1962, 127(2): 359.CrossRefGoogle Scholar
  15. 15.
    Pathria, R. K., Statistical Mechanics, Oxford, Toronto: Pergamon Press, 1972.Google Scholar
  16. 16.
    Landau, L. D., Lifshitz, E. M., Statistical Physics, Oxford: Pergamon Press, 1980.Google Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations