Advertisement

Chinese Science Bulletin

, Volume 45, Issue 21, pp 1959–1963 | Cite as

Circular dichroism spectroscopic studies on structures formed by telomeric DNA sequencesin vitro

  • Xiaoyan Zhang
  • Enhua Cao
  • Xueguang Sun
  • Chunli Bai
Notes

Abstract

Telomere plays an important role in cellular processes, such as cell aging, death and carcinogenisis. Having special sequences, it can form quadruplex structurein vitro. Circular dichroism (CD) spectroscopic studies show that TTAGGG, (TTAGGG)2 and (TTAGGG)4 can all form quadruplexin vitro and exist mainly as parallel quadruplex without metal ions. Both K+ and Na+ can stabilize the tetrameric structure and facilitate the forming of anti-parallel conformation. Furthermore, the conformations of quadruplex can also be affected by sequence length, the nature and concentration of metal ions.

Keywords

human telomere quadruplex conformation CD spectrum K+ Na+ cation concentration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elizabeth, H. B., Structure and function of telomeres, Nature, 1991, 18: 569.Google Scholar
  2. 2.
    Johnson, F. B., Marciniak, R. A., Guarente, L., Telomeres, the nucleolus and aging, Current Opinion in Cell Biology, 1998, 10: 332.PubMedCrossRefGoogle Scholar
  3. 3.
    Zahler, A. M., Williamson, J. R., Cech, T. R. et al., Inhibition of telomerase by G-quartet DNA structures, Nature, 1991, 350: 718.PubMedCrossRefGoogle Scholar
  4. 4.
    Nicholas, V. H., Flint, W. S., Juli, F. et al., The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by1H NMR, Biochemistry, 1996, 35: 15383.CrossRefGoogle Scholar
  5. 5.
    Williamson, J. R., Raghuraman, M. K., Cech, T. R., Monovalent cation-induced structure of telomeric DNA: the G-quartet model, Cell, 1989, 59: 871.PubMedCrossRefGoogle Scholar
  6. 6.
    Harrington, C., Lan, Y., Akman, S. A., The identification and characterization of a G4-DNA resolvase activity, The Journal of Biological Chemistry, 1997, 272(39): 24631.PubMedCrossRefGoogle Scholar
  7. 7.
    Sun, X. G., Cao, E. M., He, Y. J. et al., Spectroscopic comparison of different DNA structures formed by oligonucleotides, Journal of Biomolecular Structure & Dynamics, 1999, 16: 863.Google Scholar
  8. 8.
    Mark, C. W., Thiele, D., Poly(dC) · poly(dC) at neutral and alkaline pH: the formation of triple stranded poly(dG) · poly(dG) · poly(dC), Nucleic Acids Research, 1978, 5: 1017.CrossRefGoogle Scholar
  9. 9.
    Williamson, J. R., G-quartet structures in telomeric DNA, Annu. Rev. Biophys. Biomol. Struct., 1994, 23: 703.PubMedCrossRefGoogle Scholar
  10. 10.
    Balagurumoorthy, P., Brahmachari, S. K., Mohantyk, D. et al., Hairpin and parallel quartet structure for telomeric sequences, Nucleic Acids Research, 1992, 20(15): 4061.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, Y., Patel, D. J., Guanine residues in d(T2AG3) and d(T2G4) from parallel-stranded potassium cation stabilized G-quardruplexes with anti-glycosidic torsion angels in solution, Biochemistry, 1992, 31: 8112.PubMedCrossRefGoogle Scholar
  12. 12.
    Sen, D., Gilbert, W., A sodium-potassium switch in the formation of four-stranded G4-DNA, Nature, 1990, 344: 410.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Xiaoyan Zhang
    • 1
  • Enhua Cao
    • 1
  • Xueguang Sun
    • 1
  • Chunli Bai
    • 2
  1. 1.Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations