Skip to main content
Log in

Stress-wave displacement polarizations and aftenuation in unidirectional composites: Theory and experiment

  • Published:
Research in Nondestructive Evaluation

Abstract

The wave propagation mechanism of changes in displacement polarizations was studied in unidirectional graphite/epoxy composite materials. Change in Displacements can be large enough to cause a transition in the mode or displacement polarizations from longitudinal to transverse. These unusual mode transitions are a result of the peculiar elastic anisotropy observed in only a few crystals and unidirectional graphite/epoxy composities at high-fiber volume fractions Theoretical calculation of these mode transitions were compared with experimental measurements Mode transitions occur when the wave vector orientation is varied from 51.9° to 74.4° in unidirectional samples of T300/5208 graphite/epoxy composite with a 0.6°-fiber volume fraction. Energy flux deviation and particle displacement directions and amplitudes also were compared with theory. To show this mode transition, an attenuation study was performed. The attenuation coefficient, measured in units of reciprocal time, does not appear to depend on the wave vector orientation and the wave type (quasi-transverse and quasi-longitudinal waves) at 5-MHZ frequency. But the attenuation coefficient, expressed in units of reciprocal length, does depend on the wave type and the wave vector orientation because the wave velocity is included in the calculation of this coefficient. Previous studies have focused on how anisotropy and attenuation influence the stress wave speed (eigenvalues), but in this study we focused more on how the same parameters influence the displacement polarizations (eigenvectors) of the same propagating waves. Because eigenvalues and their corresponding eigenvectors are both solutions of the same eigenvalue problem, more attention should be given to measurement of the eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E i :

Young’s moduli

G ij :

shear moduli

v ij :

Poisson’s ratios

C ij :

elastic-stiffness coefficients

C ijkl :

fourth-rank elastic-stiffness tensor

n j :

normalized wave vector (vector perpendicular to the plane wave)

p :

mass density

δ ij :

Kronecker delta function

v :

phase velocity

w i :

normalized particle displacement direction

J i :

energy flux vector

σ ij :

stress tensor

U j :

particle displacement velocity

U I :

incident wave of particle displacement amplitude

U QL :

quasi-longitudinal wave of particle displacement amplitude

U QT :

quasi-transverse wave of particle displacement amplitude

U T :

pure transverse of particle displacement amplitude

α t :

attenuation coefficients ins −1

α l :

attenuation coefficients in l−1

A 0 :

maximum amplitude

Q LL (θ):

longitudinal component of quais-longitudinal wave at θ

Q LT (θ):

transverse component of quasi-longitudinal wave at θ

Q TL (θ):

longitudinal component of quasi-transverse wave at θ

Q TT (θ):

transverse component of quasi-transverse wave at θ

θ mt :

wave vector orientation corresponding to mode transition

References

  1. R. HaimshawNodestructive Testing, Metallurgy and Materials Science Series, Arnold Edition (1987).

  2. D. Ensminger.Ultrasonics, Second Edition, Marcel Dekker. Inc. New York and Basel, (1988).

    Google Scholar 

  3. G. Lubin,Handbook of Composites, Van Nostrand Reinhold, New York (1982)

    Google Scholar 

  4. R. D. Kriz and H. M. Ledbetter. In:Recent Advances in Composites in United States and Japan (ASTM STP 864), J. R. Vinson and M. Taya, eds., American Society for Testing and Materials, Philadephia, pp. 661–675 (1985)

    Google Scholar 

  5. R. E. Smith.J. Appl. Phys,43(6): 2555–2562 (1972)

    Article  ADS  Google Scholar 

  6. R. D. Kriz.Mechanical Properties for Thick Fiber-Reinforced Composite Materials Having Transversely Isotropic Fibers, Master’s Thesis, VPI&SU, Blacksburg, VA (1976)

    Google Scholar 

  7. R. D. Kriz and W. W. Stinchcomb,Exper. Mech. 19(2): 41–49 (1979)

    Article  Google Scholar 

  8. S. K. Datta, H. M. Ledbetter, and R. D. Kriz.Int. J. Solids Structures 20(5): 429–438 (1984)

    Article  MATH  Google Scholar 

  9. R. D. Kriz and J. M. Gary.Review of Progress in Quantitative Nondestructive Evaluation, Vol. 9, 1990, pp. 125–132

    Google Scholar 

  10. R. D. Kriz and P. R. Heyliger.Review of Progress in Quantitative Nondestructive Evaluation, Vol. 8A, 1989, pp. 141–148.

    Google Scholar 

  11. W. H. Prosser, R. D. Kriz. and D. W. Fitting.IEEE 1990 Ultrasonics Symposium, IEEE Press, pp. 961–964 (1990)

  12. R. D. Kriz. In:Solid Mechanics Research for Quantitative Nondestructive Evaluation, Martin Nijhoff. pp. 389–395 (1987)

  13. R. D. Kriz and H. M. Ledbetter. In:Rheology of Anisotropic Materials, C. Huet, D. Bourgoin and S. Richemond eds., CR19 Coll, Paris 1984, Editions CEPADUES, Toulouse, 1986, pp. 79–92

    Google Scholar 

  14. D. W. Fitting, R. D. Kriz and A. V. Clark.Review of Progress in Quantitative Nondestructive Evaluation. Vol. 88, 1989, pp. 1497–1504

    Google Scholar 

  15. B. Hosten.J. Acost. Soc. Am. 89(6): 2745–2752 (1991)

    Article  ADS  Google Scholar 

  16. R. A. Kline and Z. T. Chen.Mat. Eval. 46: 986–992 (1988)

    Google Scholar 

  17. S. Wolfram.Mathematica, Addison Wesley, Reading, Massachusetts (1988)

    MATH  Google Scholar 

  18. B. Vandenbossche.Measurement of Ultrasonic Wave Mode Transition in Unidirectional Graphite Epory Composites, Master’s Thesis, VPI&SU, Blacksburg, Virginia (1991)

    Google Scholar 

  19. R. Truell, C. Elbaum, and B. B. Chick.Ultrasonic Methods in Solid State Physics. Academic Press, New York, San Francisco, London (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Vandenbossche, B., Kriz, R.D. & Oshima, T. Stress-wave displacement polarizations and aftenuation in unidirectional composites: Theory and experiment. Res Nondestr Eval 8, 101–123 (1996). https://doi.org/10.1007/BF02909484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02909484

Keywords

Navigation