Biologia Plantarum

, 24:388 | Cite as

Acid-soluble chromosomal proteins in maize root and callus cells and after rhizogenesis induction in callus tissues

  • Stanka Koleva
  • Elena Marinova
  • Stefka Varadinova
  • Elena Tsikova
  • A. Atanassov
Orginal Papers


Callus tissues originating fromZea mays root meristem, induced for rhizogenesis callus, meristematic and differentiated maize root cells for isolation of nuclei and acid-soluble chromosomal proteins were used. Cytological investigations proved that rhizogenesis begins with the formation of meristematic centres, followed by root differentiation about 5–12 days after the treatment with α-naphtalene acetic acid (NAA). When applying electrophoresis in 15% polyacrylamide gel, differences between the electrophoretic profiles of acid-soluble chromosomal proteins, isolated from root cells and from callus tissues, were established. The main differences concern histone H1 and probably H4. There are no differences between electrophoretic patterns of acid-soluble chromosomal proteins of nonorganized callus and callus induced for rhizogenesis. The possible explanation of these results is discussed.


Root Cell Callus Tissue Maize Root Callus Cell Chromosomal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Butenko, R. G.: [Experimental Morphogenesis and Differentiation in Cultured Plant Cells, XXXV Timiryazev Lecture]. In Russ. -Nauka, Moskva 1975.Google Scholar
  2. Oraes, A. F., Claesson, H. J. M., Wellensiak, S. I.: Changes in histones associated with induction of flowering inSilene armeria. - Z. Pflanzenphysiol.B68: 391–396, 1972.Google Scholar
  3. Gofshtein, L. V.: [Histones of plant origin in connection with evolution from prokaryotes to eukaryotes]. In Russ. -Biokhimiya43: 947–958, 1978.Google Scholar
  4. Hurley, C. K., Stout, J. T.: Electrophoretic variants of histone H1 inZea mays. - Genetics86: 31–32, 1977.Google Scholar
  5. Konstantinova, T. N., Gofshtein, L. V., Molodiuk, O. I., Bavrina, T. V., Aksenova, N. P.: [Histones from tobacco callus with generative and vegetative morphogenesis]. In Russ. - Dokl. Akad. Nauk SSSR216: 226–228, 1974.Google Scholar
  6. Marinova, E. I., Koleva, S. T., Varadinova, S. Ts., Koteva, N. B.: [Root cell growth induced changes in nuclear and chromatin proteins ofZea mays L.] In Russ. - In:Georgiev, G., Bakardjieva, N. Koleva, S. (ed.): Self-Regulation of Plant Metabolism. Pp. 152–159. University Press, Sofia 1981.Google Scholar
  7. Muller, A. G., Phillipps, G., Gigot, C.: Properties of condensed chromatin in barley nuclei. -Planta149: 69–77, 1980.CrossRefGoogle Scholar
  8. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. -Physiol. Plant.15: 457–497, 1962.CrossRefGoogle Scholar
  9. Murray, M. G., Key, J. L.: 2,4-Dichlorophenoxyacetic acid enhanced phosphorylation of soybean nuclear proteins. -Plant Physiol.61: 190–198, 1978.PubMedCrossRefGoogle Scholar
  10. Nadeau, P., Pallotta, D., Lafontaine, J. G.: Electrophoretic study of plant histones; com- parison with vertebrate histones. - Arch. Biochem. Biophys.161: 171–177, 1974.CrossRefGoogle Scholar
  11. Novák, F. J., Opatrný, Z., Rovenská, B., Nestický, M.: Studies on the morphogenetic response of maize tissue cultures of different origin. - Biol. Plant.21: 418–426, 1979.CrossRefGoogle Scholar
  12. Panyim, S. R., Chalkley, R.: High resolution acrylamide gel electrophoresis of histones. - Arch. Biochem. Biophys.130: 337–346, 1969.PubMedCrossRefGoogle Scholar
  13. Rindt, K. P., Nover, L.: Chromatin structure and function. - Biol. Zentralbl.99: 641–673, 1980.Google Scholar
  14. Shannon, M. C., Daniel, R. G.: Histones and histone-DNA ratios in diploid and polyploid cot- tons. - Growth43: 252–262, 1979.PubMedGoogle Scholar
  15. Sidorova, V. V., Konarev, V. G.: [Isolation and purification of plant histones]. In Russ. - Biokhimia46: 1298–1307, 1981.Google Scholar
  16. Spiker, S., Key, J. L., Wakim, B.: Identification and fractionation of plant histones. - Arch. Biochem. Biophys.176: 510–518, 1976.PubMedCrossRefGoogle Scholar
  17. Spiker, S., Krishnawamy, L.: Constancy of wheat histones during development. - Planta110: 71–76, 1973.CrossRefGoogle Scholar
  18. Srivastava, S. J. S.: Relationship of histones to RNA synthesis. - Physiol. Plant.24: 27–33, 1971.CrossRefGoogle Scholar
  19. Tsanev, R.: Role of histones in cell differentiation. - In:Kolodny, G. M. (ed.): Eukaryotic Gene Regulation, Vol. 2. Pp. 58–96. CRC Press, Boca Raton 1981.Google Scholar
  20. Zeleneva, I. V., Khavkin, E. E.: Rearrangement of enzyme patterns in maize callus and suspension cultures. Is it relevant to the changes in the growing cells of the intact plants? - Planta148: 108–115, 1980.CrossRefGoogle Scholar

Copyright information

© Academia 1982

Authors and Affiliations

  • Stanka Koleva
    • 1
  • Elena Marinova
    • 1
  • Stefka Varadinova
    • 1
  • Elena Tsikova
    • 2
  • A. Atanassov
    • 2
  1. 1.M. Popov Institute of Plant PhysiologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of GeneticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations