Skip to main content
Log in

Copper accumulation byAspergillus awamori

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Aspergillus awamori accumulated Cu2+ from aqueous solutions. The level of copper uptake was dependent on the ambient metal concentration. The process consisted of two phases: a fast initial phase and a slower secondary phase. Chelation of these ions occurs by chemical, equilibrated and saturable mechanism, following the mathematical models of Langmuir and Freundlich, with better performance on the Langmuir model. Data transformation allowed us to calculate the kinetic constants of the sorption reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brady D., Duncan J.R.: Bioaccumulation of metal cations bySaccharomyces cerevisiae.Appl. Microbiol. Biotechnol. 41, 149–154 (1994).

    Article  CAS  Google Scholar 

  • Butter T.J., Evison L.M., Hangock I.C.: The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale.Water Res. 32, 400–406 (1998).

    Article  CAS  Google Scholar 

  • Eric G., Roulph C., Cloirec P.: Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin.Environ. Sci. Technol. 29, 2496–2503 (1995).

    Article  Google Scholar 

  • Fourest E., Roux J.C.: Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH.Appl. Microbiol. Biotechnol. 37, 399–403 (1992).

    Article  CAS  Google Scholar 

  • Gadd G.M.: Fungal responses towards heavy metal, pp. 83–100 in R.A. Herbert, G.A. Godd (Eds):Microbes in Extreme Environments. Academic Press, London 1986.

    Google Scholar 

  • Gadd G.M.: Heavy metal accumulation by bacteria and other microorganisms.Experientia 46, 834–840 (1990).

    Article  CAS  Google Scholar 

  • Geraldine S., Mancean A., Spadim L.: Structural determination of Zn and Pb binding sites inPenicillium chrysogenum cell walls by EXAFS spectroscopy.Environ. Sci. Technol. 32, 1648–1655 (1998).

    Article  Google Scholar 

  • Gharaiben S.H., Wa'il Y., El-Sha'r A.: Remowal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products.Water Res. 32, 498–502 (1998).

    Article  Google Scholar 

  • Hefnawy M.A., Razak A.A.: Alteration of cell-wall composition ofFusarium oxysporum by copper stress.Folia Microbiol. 43, 453–458 (1998).

    Article  CAS  Google Scholar 

  • Huang C., Huang C.P.: Application ofAspergillus oryzae andRhizopus oryzae for Cu(II) removal.Water Res. 1985–1990 (1996).

  • Nabil B.O., Merroun M.L., Penalver J.M.: Comparative heavy metals biosorption study of brewery yeast andMyxococcus xanthas biomass.Chemosphere 35, 2277–2283 (1997).

    Article  Google Scholar 

  • Norris P.R., Kelly D.P.: Accumulation of cadmium and cobalt bySaccharomyces cerevisiae.J. Gen. Microbiol. 99, 317–324 (1977).

    CAS  Google Scholar 

  • de Rome L., Gadd G.M.: Copper adsorption byRhizopus arrhizus, Cladosporium resinae andPenicillium italicum.Appl. Microbiol. Biotechnol. 26, 84–90 (1987).

    Article  Google Scholar 

  • Volesky B.: Removal and recovery of heavy metals by biosorption, pp. 7–44 in B. Volesky (Ed.):Biosorption of Heavy Metals. CRC Press, Boca Raton (FL) 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsekova, K.V., Marinov, P.G. & Tzekova, A.N. Copper accumulation byAspergillus awamori . Folia Microbiol 45, 217–220 (2000). https://doi.org/10.1007/BF02908947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908947

Keywords

Navigation