Folia Microbiologica

, Volume 45, Issue 3, pp 217–220 | Cite as

Copper accumulation byAspergillus awamori

  • K. V. Tsekova
  • P. G. Marinov
  • A. N. Tzekova


Aspergillus awamori accumulated Cu2+ from aqueous solutions. The level of copper uptake was dependent on the ambient metal concentration. The process consisted of two phases: a fast initial phase and a slower secondary phase. Chelation of these ions occurs by chemical, equilibrated and saturable mechanism, following the mathematical models of Langmuir and Freundlich, with better performance on the Langmuir model. Data transformation allowed us to calculate the kinetic constants of the sorption reaction.


Sorption Isotherm Langmuir Model Copper Accumulation Copper Adsorption Heavy Metal Biosorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brady D., Duncan J.R.: Bioaccumulation of metal cations bySaccharomyces cerevisiae.Appl. Microbiol. Biotechnol. 41, 149–154 (1994).CrossRefGoogle Scholar
  2. Butter T.J., Evison L.M., Hangock I.C.: The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale.Water Res. 32, 400–406 (1998).CrossRefGoogle Scholar
  3. Eric G., Roulph C., Cloirec P.: Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin.Environ. Sci. Technol. 29, 2496–2503 (1995).CrossRefGoogle Scholar
  4. Fourest E., Roux J.C.: Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH.Appl. Microbiol. Biotechnol. 37, 399–403 (1992).CrossRefGoogle Scholar
  5. Gadd G.M.: Fungal responses towards heavy metal, pp. 83–100 in R.A. Herbert, G.A. Godd (Eds):Microbes in Extreme Environments. Academic Press, London 1986.Google Scholar
  6. Gadd G.M.: Heavy metal accumulation by bacteria and other microorganisms.Experientia 46, 834–840 (1990).CrossRefGoogle Scholar
  7. Geraldine S., Mancean A., Spadim L.: Structural determination of Zn and Pb binding sites inPenicillium chrysogenum cell walls by EXAFS spectroscopy.Environ. Sci. Technol. 32, 1648–1655 (1998).CrossRefGoogle Scholar
  8. Gharaiben S.H., Wa'il Y., El-Sha'r A.: Remowal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products.Water Res. 32, 498–502 (1998).CrossRefGoogle Scholar
  9. Hefnawy M.A., Razak A.A.: Alteration of cell-wall composition ofFusarium oxysporum by copper stress.Folia Microbiol. 43, 453–458 (1998).CrossRefGoogle Scholar
  10. Huang C., Huang C.P.: Application ofAspergillus oryzae andRhizopus oryzae for Cu(II) removal.Water Res. 1985–1990 (1996).Google Scholar
  11. Nabil B.O., Merroun M.L., Penalver J.M.: Comparative heavy metals biosorption study of brewery yeast andMyxococcus xanthas biomass.Chemosphere 35, 2277–2283 (1997).CrossRefGoogle Scholar
  12. Norris P.R., Kelly D.P.: Accumulation of cadmium and cobalt bySaccharomyces cerevisiae.J. Gen. Microbiol. 99, 317–324 (1977).Google Scholar
  13. de Rome L., Gadd G.M.: Copper adsorption byRhizopus arrhizus, Cladosporium resinae andPenicillium italicum.Appl. Microbiol. Biotechnol. 26, 84–90 (1987).CrossRefGoogle Scholar
  14. Volesky B.: Removal and recovery of heavy metals by biosorption, pp. 7–44 in B. Volesky (Ed.):Biosorption of Heavy Metals. CRC Press, Boca Raton (FL) 1990.Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2000

Authors and Affiliations

  • K. V. Tsekova
    • 1
  • P. G. Marinov
    • 2
  • A. N. Tzekova
    • 3
  1. 1.Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Central Laboratory for Parallel ProcessingBulgarian Academy of SciencesSofia
  3. 3.Ministry of Environment and WaterSofia

Personalised recommendations