Biologia Plantarum

, 37:541 | Cite as

The effects of lead and kinetin on greening barley leaves

  • A. Woźny
  • J. Schneider
  • E. A. Gwóźdź
Original Papers


The content of lead in greening etiolated barley leaves remained the same, regardless the time of incubation of excised leaves in the presence of lead ions (8–24 h). The lead deposits have not been detected within mesophyll cells, but were found in intercellular spaces of mesophyll, in guard cells and in cuticle covering stomata. This suggests that lead may be transported in the leavesvia transpiration stream. Lead reduced the content of chlorophyll, especially chlorophyllb content and the average number of grana, whereas in the presence of kinetin the content of chlorophyll increased. In the combined treatment (lead + kinetin) kinetin diminished the inhibitory effect of lead on the chlorophyll content. The number of chloroplasts in mesophyll cells remained unchanged after lead treatment, whereas kinetin alone or applied together with lead increased the average chloroplasts number. The thylakoids system in chloroplasts of kinetin and kinetin + lead treated plants was similar to that observed in control, although the grana number was smaller. Both lead and kinetin increased the content of condensed chromatin in nuclei.

Key words

chlorophyll chloroplast growth regulators heavy metal Hordeum vulgare ultrastructure 


  1. Arnon, D.J.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris.—Plant Physiol.24: 1–15, 1949.PubMedGoogle Scholar
  2. Bazzaz, F.A., Carlson, R.W., Rolfe, G.L.: The effect of heavy metals on plants: Part I. Inhibition of gas exhange in sunflower by Pb, Cd, Ni and Tl.—Environ. Pollut.7: 241–246, 1974.CrossRefGoogle Scholar
  3. Bazzaz, F.A., Carlson, R.W., Rolfe, G.L.. Inhibition of corn and sunflower photosynthesis by lead.— Physiol. Plant.34: 326–329, 1975.CrossRefGoogle Scholar
  4. Bazzaz, F.A., Govindjee: Effects of lead chloride on chloroplast reaction.—Environ. Lett.6: 175–191, 1974.PubMedGoogle Scholar
  5. Becerril, J.M., Muñoz-Rueda, A., Aparicio-Tejo, P., Gonzalez-Murua, C.: The effects of cadmium and lead on photosynthetic electron transport in clover and lucerne.—Plant Physiol. Biochem.26: 357–363, 1988.Google Scholar
  6. Bessonova, V.P., Lyzhenko, I.I., Mikhailov, O.F., Kulaeva, O.N. [Influence of cytokinin on plant growth and chlorophyll content in leaves under conditions of air pollution.]—Fiziol. Rast.31: 1149–1153, 1984. [In Russ.]Google Scholar
  7. Burzyński, M.: Influence of lead on the chlorophyll content and on initial steps of its synthesis in greening cucumber seedlings.—Acta Soc. Bot. Pol.54: 95–107, 1985.Google Scholar
  8. Burzyński, M.: [Influence of lead on physiological processes of plant].—Wiad. Bot.31: 87–96, 1987. [In Pol.]Google Scholar
  9. Čiamporová, M.: Recovery of ultrastructure in water stressed root epidermal cells ofZea mays.—In: Loughman, B.C., Gašparíková, O., Kolek, J. (ed.): Structural and Functional Aspects of Transport in Roots. Pp. 263–267. Kluwer Academic Publishers, Dordrecht-Boston-London 1989.Google Scholar
  10. Glater, R.A., Hernandez, L.: Lead detection in living plant tissue using a new histochemical method.— J. Air Pollut. Control Assoc.22: 463–467, 1972.PubMedGoogle Scholar
  11. Hiscox, J.D., Israelstam, G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration.—Can. J. Bot.57: 1332–1334, 1979.CrossRefGoogle Scholar
  12. Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy.—J. Cell Biol.27: 137–138, 1965.Google Scholar
  13. Kinoshita, I., Sanbe, A., Yokomura, E.-I.: Increaces in nuclear DNA content without mitosis in benzyladenine-treated primary leaves of intact and decapitated bean plants.—J. exp. Bot.42: 667–672, 1991.CrossRefGoogle Scholar
  14. Miles, C.D., Brandle, J.R., Daniel, D.J., Chu-Der, O., Schnare, P.D., Uhlik, D.J.: Inhibition of photosystem II in isolated chloroplasts by lead.—Plant Physiol.49: 820–825, 1972.PubMedCrossRefGoogle Scholar
  15. Nagl, W., Peschke, W.: Automatische Diagnose der artspezifischen Kern-Ultrastructur sowie von Zellzyklusstadien bei Pflanzen mit Hilfe des Bildanalysesystems Leitz T.A.S.—Leitz-Mitt. Wiss. Technol.8: 29–32, 1982.Google Scholar
  16. Poskuta, J.W., Parys, E., Romanowska, E.: The effects of lead on the gaseous exchange and photosynthetic carbon metabolism of pea seedlings.—Acta Soc. Bot. Pol.56: 127–137, 1987.Google Scholar
  17. Poskuta, J.W., Parys, E., Romanowska, E., Gajdzis-Gujdan, H., Wróblewska, B.: The effects of lead on photosynthesis,14C distribution among photoassimilates and transpiration of maize seedlings. —Acta Soc. Bot. Pol.57: 149–155, 1988.Google Scholar
  18. Radecki, J., Banaszkiewicz, T., Klasa, A.: The effect of different lead compounds on mitotic activity of maize root tip cells.—Acta Physiol. Plant.11: 125–130, 1989.Google Scholar
  19. Sharma, S.D., Chopra, R.N.: Effect of lead nitrate and lead acetate on growth of the mossSemibarbula orientalis (Web.) Marg. grownin vitro.—J. Plant Physiol.28: 243–249, 1987.Google Scholar
  20. Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy.—J. Ultrastruct. Res.26: 31–43, 1969.PubMedCrossRefGoogle Scholar
  21. Stiborová, M., Ditrichová, M., Březinová, A.: Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings.—Biol. Plant.29: 453–467, 1987.CrossRefGoogle Scholar
  22. Wellburn, A.R., Gounaris, I., Fässler, L., Lichtenthaler, H.K.: Changes in plastid ultrastructure and fluctuations of cellular isoprenoid and carbohydrate compounds during continued etiolation of dark-grown oat seedlings.—Physiol. Plant.59: 347–354, 1983.CrossRefGoogle Scholar
  23. Wellburn, A.R., Hampp, R.: Appearance of photochemical function in prothylakoids during plasid development.—Biochem. biophys. Acta547: 380–397, 1979.PubMedCrossRefGoogle Scholar
  24. Wierzbicka, M.: Lead translocation and localization inAllium cepa roots.—Can. J. Bot.65: 1851–1860, 1987.Google Scholar
  25. Wong, D., Govindjee: Effects of lead ions on photosystem I in isolated chloroplasts: studies on the reaction center P700.—Photosynthetica10: 241–254, 1976.Google Scholar
  26. Woźny, A.: Toxic Effect of Lead Compounds on Early Stages of Plant Development.—Wydawnictwo Naukowe UAM, Poznañ 1987.Google Scholar
  27. Woźny, A., Jerczyńska, E.: The effect on lead on early stages ofPhaseolus vulgaris L. growth inin vitro conditions.—Biol. Plant.33: 32–39, 1991.CrossRefGoogle Scholar
  28. Wrischer, M., Meglaj, D.: The effect of lead on the structure and function of wheat plastids.—Acta bot. croat.39: 33–40, 1980.Google Scholar

Copyright information

© Institute of Experimental Botany, ASCR 1995

Authors and Affiliations

  • A. Woźny
    • 1
  • J. Schneider
    • 1
  • E. A. Gwóźdź
    • 1
  1. 1.Faculty of Biology, Institute of Experimental BiologyAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations