Journal of Coastal Conservation

, Volume 3, Issue 1, pp 133–142 | Cite as

Effects of sand movement by wind on nematodes and soil-borne fungi in coastal foredunes

  • Goes P. C. E. M. de Rooij-van der 
  • Dijk C. van 
  • Putten W. H. van der 
  • Jungerius P. D. 


In stabilized dunesAmmophila arenaria (marram grass) degenerates due to a process involving soil-borne pathogens and parasites. This leads to exposure of the sand surface so that wind erosion may create blowouts.Ammophila rejuvenates on the edges of the blowouts, where the sand has accumulated. We tested the hypothesis that such rejuvenation of plants may be related to a reduction of the plant-parasitic nematodes and fungal propagules during the process of wind-driven transport.

Field measurements in blowouts during storm events indicated that the drifted sand contained relatively low numbers of plant pathogenic fungi and plant-parasitic nematodes. A wind tunnel experiment showed that drifting sand may indeed reduce the numbers of fungi and nematodes. Although most fungi were attached to sand particles, they were also affected by the wind-borne sand movement. Sand that had been deposited by wind was made up of a larger proportion of large-sized particles. In our experiment the relatively small particles were lost during transport.

Stirring the soil (part of the forces of natural winds) by mixing for 15 min. with a propeller mixer at 1500 rpm significantly reduced the number of nematodes and fungi. Both sand movement in the wind tunnel and intensive stirring of the sand enhanced the growth ofAmmophila test plants in a bioassay. It was concluded that in wind-blown sand the pathogen inoculum is reduced. Therefore, serious consideration should be given to allowing controlled reactivation of blow-outs to rejuvenate decliningAmmophila in stabilized foredunes.

Implications for dune management are briefly discussed.


Aeolian transport Ammophila arenaria Blow-out Sand supply Rejuvenation Soil-borne disease 


van der Meijden (1990) for vascular plants. Nematodes were identified to the genus level according to Bongers (1988) The allocation of nematodes to feeding groups was according to Yeates et al. (1993) Nomenclature of fungi according to Domsch et al. (1980) was used throughout this study except forFusarium Species of the latter genus were identified according to Nelson et al. (1983) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagnold, R.A. 1954. The physics of blown sand and desert dunes. 2nd ed. Methuen, London.Google Scholar
  2. Baye, P.R. 1990. Comparative growth responses and population ecology of European and American beachgrasses (Ammophila spp.) in relation to sand accretion and salinity. PhD. thesis, University of Western Ontario, London, Ont.Google Scholar
  3. Bongers, T. 1988. De nematoden van Nederland. Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht.Google Scholar
  4. Carter, R.W.G., Hesp, P.A. & Nordstrom, K.F. 1990. Erosional landforms in coastal dunes. In: Nordstrom, K.F., Psuty, N. & Carter, R.W.G. (eds.) Coastal dunes. Forms and process, pp. 217–249. John Wiley and Sons Ltd, Chichester.Google Scholar
  5. de Rooij-van der Goes, P.C.E.M. 1995. The role of plantparasitic nematodes and soil-borne fungi in the decline of Ammophila arenaria (L.) Link. New Phytol. 129: 661–669.CrossRefGoogle Scholar
  6. de Rooij-van der Goes, P.C.E.M., van der Putten, W.H. & Peters, B.A.M. 1995a. Effects of sand deposition on the interaction between Ammophila arenaria, plant-parasitic nematodes and pathogenic fungi. Can. J. Bot. 73: 1141–1150.CrossRefGoogle Scholar
  7. de Rooij-van der Goes, P.C.E.M., van der Putten, W.H. & van Dijk, C. 1995b. Analysis of nematodes and soil-borne fungi from Ammophila arenaria (Marram grass) in Dutch coastal foredunes by multivariate techniques. Eur. J. Plant Pathol. 101: 149–162.CrossRefGoogle Scholar
  8. Disraeli, D.J. 1984. The effect of sand deposits on the growth and morphology of Ammophila breviligulata. J. Ecol. 72: 145–154.CrossRefGoogle Scholar
  9. Domsch, K.H., Gams, W. & Anderson, T.-H. 1980. Compendium of soil fungi. Vols. 1 & 2. Academic Press, London.Google Scholar
  10. Draga, M. 1983. Eolian activity as a consequence of beach nourishment-observations at Westerland (Sylt), German North Sea coast. Zeitschr. f. Geomorphol. 45: 303–319.Google Scholar
  11. Eisenback, J.D. 1993. Interactions between nematodes in cohabitance. In: Khan, M.W. (ed.) Nematode interactions, pp. 134–174. Chapman and Hall, London.Google Scholar
  12. Eisenback, J.D. & Griffin, G.D. 1987. Interactions with other nematodes. In: Veech, J.A. & Dickson, D.W. (eds.) Vistas on nematology: a commemoration of the 25th anniversary of the Society of Nematologists, pp. 313–320. Society of nematologists, De Leon Springs, FL.Google Scholar
  13. Eldred, R.A. & Maun, M.A. 1982. A multivariate approach to the problem of decline in vigour of Ammophila. Can. J. Bot. 60: 1371–1380.CrossRefGoogle Scholar
  14. Forster, S.M. & Nicolson, T.H. 1981. Microbial aggregation of sand in a maritime dune succession. Soil Biol. Biochem. 13: 205–208.CrossRefGoogle Scholar
  15. Gregory, P.H. 1961. Microbiology of the atmosphere. Leonard Hill, London.Google Scholar
  16. Hesp, P. 1990. Through blowouts. J. Boundary-Layer Meteorol. 77: 305–330.CrossRefGoogle Scholar
  17. Hillen, R. & Roelse, P. 1995. Dynamic preservation of the coastline in the Netherlands. J. Coastal Conserv. 1: 17–28.CrossRefGoogle Scholar
  18. Hooper, D.L. 1986. Extraction of free-living stages from soil. In: Southey, J.F. (ed.) Laboratory methods for work with plant and soil nematodes. Reference book 402, pp. 5–30. Ministry of Agriculture, Fisheries and Food, Her MajestyÕs Stationary Office, London.Google Scholar
  19. Hope-Simpson, J.F. & Jefferies, R.L. 1966. Observations relating to vigour and debility in marram grass (Ammophila arenaria (L.) Link). J. Ecol. 54: 271–275.CrossRefGoogle Scholar
  20. Huiskes, A.H.L. 1979. Biological flora of the British isles: Ammophila arenaria (L.) Link (Psamma arenaria (L.) Roem. et Shult.: Calamagrostis arenaria (L.) Roth). J. Ecol. 67: 363–382.CrossRefGoogle Scholar
  21. Jungerius, P.D. & van der Meulen, F. 1989. The development of dune blowouts, as measured with erosion pins and sequential air photos. Catena 16: 369–376.CrossRefGoogle Scholar
  22. Jungerius, P.D. & van der Meulen, F. 1997. Aeolian dynamics in relation to vegetation in a blowout complex in the Meijendel dunes, The Netherlands. J. Coastal Conserv. 3: 63–70.CrossRefGoogle Scholar
  23. Marshall, J.K. 1965. Corynephorus canescens (L.) P. Beauv. as a model for the Ammophila problem. J. Ecol. 53: 447–465.CrossRefGoogle Scholar
  24. Maun, M.A. 1984. Colonisation ability of Ammophila breviligulata through vegetative regeneration. J. Ecol. 72: 565–574.CrossRefGoogle Scholar
  25. Maun, M.A. & Lapierre, J. 1984. The effects of burial by sand on Ammophila breviligulata. J. Ecol. 72: 827–839.CrossRefGoogle Scholar
  26. Nelson, P.E., Toussoun, T.A. & Marasas, W.F.O. 1983. Fusarium species. An illustrated manual for identification. Pennsylvania State University Press, University Park, London.Google Scholar
  27. Olson, J.S. 1958. Lake Michigan dune development. 2. Plants as agents and tools in geomorphology. J. Geol. 66: 254–263.CrossRefGoogle Scholar
  28. Oostenbrink, M. 1960. Estimating nematode populations by some selected methods. In: Sasser, J.N. & Jenkins, W.R. (eds.) Nematology, pp. 85–102. University of North Carolina Press, Chapel Hill, NC.Google Scholar
  29. Orr, C.C. & Newton, O.H. 1971. Distribution of nematodes by wind. Plant Disease Reporter 55: 61–63.Google Scholar
  30. Pluis, J.L.A. & de Winder, B. 1990. Natural stabilization. In: Bakker, T.W.M., Jungerius, P.D. & Klijn, J.A. (eds.) Dunes of the European Coasts. Catena supplement 18: 195–208.Google Scholar
  31. Ranwell, D.S. 1972. Ecology of salt marshes and sand dunes. Chapman and Hall, London.Google Scholar
  32. van Boxel, J.H., Jungerius, P.D., Kieffer, N. & Hampele, N. 1997. Ecological effects of reactivation of artificially stabilized blowouts in coastal dunes. J. Coastal Conserv. 3: 57–62.CrossRefGoogle Scholar
  33. van der Meijden, R., Weeda, E.J., Adema, F.A.C.B. & de Joncheere, G.J. 1990. Heukels’ Flora van Nederland. 20th ed. Wolters-Noordhof, Groningen.Google Scholar
  34. van der Putten, W.H. & Peters, B.A.M. 1995. Possibilities for management of coastal foredunes with deteriorated stands of Ammophila arenaria (marram grass). J. Coastal Conserv. 1: 29–40.CrossRefGoogle Scholar
  35. van der Putten, W.H. & Troelstra, S.R. 1990. Harmful soil organisms in coastal foredunes involved in degeneration of Ammophila arenaria and Callamophila baltica. Can. J. Bot. 68: 1560–1568.CrossRefGoogle Scholar
  36. van der Putten, W.H., Maas, P.W.Th., van Gulik, W.J.M. & Brinkman, H. 1990. Characterization of soil organisms involved in the degeneration of Ammophila arenaria. Soil Biol. Biochem. 22: 845–852.CrossRefGoogle Scholar
  37. van Dieren, J.W. 1934. Organogene Dünenbildung. Eine geomorphologische Analyse der Dünenlandschaft der West-Friesischen Insel Terschelling mit pflanzensoziologischen Methoden. Martinus Nijhoff, Den Haag.Google Scholar
  38. Warcup, J.H. 1960. Methods for the isolation and estimation of activity of fungi. In: Parkinson, D. & Waid, J.S. (eds.) The ecology of soil fungi, pp. 3–21. Liverpool University Press, LiverpooGoogle Scholar
  39. Willis, A.J. 1989. Coastal sand dunes as biological system. Proc. R. Soc. Edinb. 96B: 17–36.Google Scholar
  40. Yeates, G.W., Bonger, T., de Goede, R.G.M., Freckman, D.W. & Georgieva, S.S. 1993. Feeding habits in soil nematode families and genera. An outline for soil ecologists. J. Nematol. 25: 315–331.Google Scholar
  41. Zadoks, J.C. & Schein, R.D. 1979. Epidemiology and plant disease management. Oxford University Press, New York, NY.Google Scholar
  42. Zoon, F.C., Troelstra, S.R. & Maas, P.W.Th. 1993. Ecology of the plant-feeding nematode fauna associated with sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides) in different stages of dune succession. Fund. Appl. Nematol. 16: 247–258.Google Scholar

Copyright information

© EUCC 1997

Authors and Affiliations

  • Goes P. C. E. M. de Rooij-van der 
    • 1
  • Dijk C. van 
    • 1
  • Putten W. H. van der 
    • 1
  • Jungerius P. D. 
    • 2
  1. 1.Netherlands Institute of EcologyHeterenThe Netherlands
  2. 2.Department of Physical Geography and Soil ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations