Tamaño optimo de una muestra: Solucion Bayesiana

  • José-Miguel Bernardo Herranz


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BERNARDO, J.M. (1974):Diseño Bayesiano de la experimentación científica. Tesis doctoral. Universidad de Valencia.Google Scholar
  2. BOX, G.E.P. & TIAO, G.C. (1973):Bayesian inference in statistical analysis. Addison-Wesley.Google Scholar
  3. DE FINETTI, B. (1937):La previsión, ses lois logiques, ses sources subjectives. Reeditado:Studies in subjective probability. (Kyburg & Smokler, eds.) Wiley, 1964: 93–158.Google Scholar
  4. DICKEY, J. (1973): Scientific reporting and personal probabilities: Student hypothesis.J. Roy. Statist. Soc. Ser B 35: 285–305.MathSciNetGoogle Scholar
  5. LEHMANN, E.L. (1959):Testing Statistical Hypothesis. Wiley.Google Scholar
  6. LINDLEY, D.V. (1956): On a measure of the information provided by an experiment.Ann. Math. Statist. 27: 986–1005.MATHCrossRefMathSciNetGoogle Scholar
  7. LINDLEY, D.V. (1971):Bayesian Statistics: a review. S.I.A.M.Google Scholar
  8. PRATT, J.W., RAIFFA, H. & SHLAIFER, R. (1964): The foundations of decision under uncertainty: an elementary exposition.J. Amer. Statist. Assoc. 59: 353–375.MATHCrossRefMathSciNetGoogle Scholar
  9. RAIFFA, H. & SCHLAIFER, R. (1961):Applied Statistical Decision Theory. Division of Research. Harvard Business School.Google Scholar
  10. RAMSEY, F.P. (1926): Truth and probability. Reeditado:Studies in subjective probability. (Kyburg & Smokler, eds.) Wiley, 1964: 61–92.Google Scholar
  11. RENYI, A. (1966):Calcul des probabilités. Dunod.Google Scholar
  12. SAVAGE, L.J. (1954):The foundations of statistics. Wiley.Google Scholar
  13. SHANNON, C.E. (1948): A Mathematical Theory of Communication.Bell Syst. Tech. J. 27: 379–423, 623–656.MathSciNetGoogle Scholar

Copyright information

© Springer 1975

Authors and Affiliations

  • José-Miguel Bernardo Herranz
    • 1
  1. 1.Universidad de ValenciaValenciaEspaña

Personalised recommendations