Serine carboxypeptidases. A review

  • Klaus Breddam


Carboxypeptidases are proteolytic enzymes which only cleave the C-terminal peptide bond in polypeptides. Those characterized until now can, dependent on their catalytic mechanism, be classified as either metallo carboxypeptidases or as serine carboxypeptidases. Enzymes from the latter group are found in the vacuoles of higher plants and fungi and in the lysosomes of animal cells. Many fungi, in addition, excrete serine carboxypeptidases. Apparently, bacteria do not employ this group of enzymes.

Most serine carboxypeptidases presumably participate in the intracellular turnover of proteins and some of them, in addition, release amino acids from extracellular proteins and peptides. However, prolyl carboxypeptidase which cleaves the C-terminal peptide bond of angiotensin II and III is a serine carboxypeptidase with a more specific function.

Serine carboxypeptidases are usually glycoproteins with subunit molecular weights of 40,000–75,000. Those isolated from fungi apparently contain only a single peptide chain while those isolated from higher plants and animals in most cases contain two peptide chains linked by disulfide bridges. However, a number of the enzymes aggregate forming dimers and oligomers.

It is probable that the well-known catalytic mechanism of the serine endopeptidases is also employed by the serine carboxypeptidases but presumably with the difference that the pKa of the catalytically essential histidyl residue is somewhat lower in the carboxypeptidases than in the endopeptidases. However, the leaving group specificity of these two groups of enzymes differ since the carboxypeptidases only release C-terminal amino acids from peptides (peptidase activity) and not longer peptide fragments. In addition, they release C-terminal amino acid amides (peptidyl amino acid amide hydrolase activity) or ammonia (amidase activity) from peptide amides and alcohols from peptide esters (esterase activity) and this property they share with the serine endopeptidases. Like other proteolytic enzymes the serine carboxypeptidases contain binding sites which secure the interaction between enzyme and substrate. In this laboratory, the properties of these have been studied for three serine carboxypeptidases, i.e. carboxypeptidase Y from yeast and malt carboxypeptidases I and II, by means of kinetic studies, chemical modifications of amino acid side-chains located at these binding sites and exchange of such amino acid residues by site-directed mutagenesis.

Serine carboxypeptidases, such as carboxypeptidase Y and malt carboxypeptidase II which are available in large quantities, can be applied for several purposes. Their broad specificity and ability to release amino acids from the C-terminus of a peptide chain can be employed in determination of amino acid sequences, and their ability to catalyze transpeptidation reactions and aminolysis of peptide esters can be employed to exchange C-terminal amino acid residues in peptides and in step-wise synthesis of polypeptides, respectively. The type of reactions catalyzed by these enzymes is limited by their specificities but, fortunately, some of the derivatives of carboxypeptidase Y with changed specificity due to chemical modifications and genetic substitutions of amino acid side-chains located at binding sites can be employed with advantage. These modified enzymes are examples on how the different activities of an enzyme can be perturbed by “protein engineering”, hence rendering the enzyme particularly suitable for certain processes.


Serine carboxypeptidase acid carboxypeptidase sequence determination peptide synthesis chemical modification kinetics site-directed mutagenesis 


  1. 1.
    Afroz, H., K. Otto, R. Müller &P. Fuhge: On the specificity of bovine spleen cathepsin B2. Biochim. Biophys. Acta 452, 503–509 (1976)PubMedGoogle Scholar
  2. 2.
    Ambler, R. P.: Carboxypeptidases A and B. Eds. C. H. N. Hirs & S. N. Timasheff, Academic Press. Methods Enzymol. 25, 262–272 (1972)Google Scholar
  3. 3.
    Auld, D. S. &B. L. Vallee: Kinetics of carboxy-peptidase A. The pH dependence of tripeptide hydrolysis catalyzed by zinc, cobalt and manganese enzymes. Biochemistry 9, 4352–4359 (1970)PubMedCrossRefGoogle Scholar
  4. 4.
    Bachovchin, W. W. &J. D. Roberts: Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of α-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteases. J. Am. Chem. Soc. 100, 8041–8047 (1978)CrossRefGoogle Scholar
  5. 5.
    Bachovchin, W., R. Kaiser, J. H. Richards &J. D. Roberts: Catalytic mechanism of serine proteases: Reexamination of the pH dependence of the histidyl1J13-C-2-H coupling constant in the catalytic triad of α-lytic protease. Proc. Natl. Acad. Sci. USA 78, 7323–7326 (1981)PubMedCrossRefGoogle Scholar
  6. 6.
    Bai, Y. &R. Hayashi: Properties of the single sulfhydryl group of carboxypeptidase Y. Effects of alkyl and aromatic mercurials on activities toward various synthetic substrates. J. Biol. Chem. 254, 8473–8479 (1979)PubMedGoogle Scholar
  7. 7.
    Bai, Y., R. Hayashi &T. Hata: Kinetic studies of carboxypeptidase Y. II. Effects of substrate and product analogs on peptidase and esterase activities. J. Biochem. (Tokyo) 77, 81–88 (1975)Google Scholar
  8. 8.
    Bai, Y., R. Hayashi &T. Hata: Kinetic studies of carboxypeptidase Y. III. Action on ester, amide, and anilide substrates and the effects of some environmental factors. J. Biochem. (Tokyo) 78, 617–626 (1975)Google Scholar
  9. 9.
    Bamforth, C. W., H. L. Martin &T. Wainwright: A role for carboxypeptidase in the solubilization of barley β-glucan. J. Inst. Brew. 85, 334–338 (1979)Google Scholar
  10. 10.
    Baudys, M., V. Kostka, G. Hausdorf, S. Fittkau &W. E. Hohne: Amino acid sequence of the tryptic SH-peptide of thermitase, a thermostable serine proteinase from thermoactinomyces vulgaris. Int. J. Peptide Res. 22, 66–72 (1983)Google Scholar
  11. 11.
    Baxter, E. D.: Purification and properties of malt carboxypeptidases attacking hordein. J. Inst. Brew. 84, 271–275 (1978)Google Scholar
  12. 12.
    Bender, M. L. &F. J. Kezdy: Mechanism of action of proteolytic enzymes. Ann. Rev. Biochem. 34, 49–76 (1964)CrossRefGoogle Scholar
  13. 13.
    Bender, M. L., G. E. Clement, C. R. Gunter &F. J. Kezdy: The kinetics of chymotrypsin reactions in the presence of added nucleophiles. J. Am. Chem. Soc. 86, 3697–3703 (1964)CrossRefGoogle Scholar
  14. 14.
    Bergmann, M. &J. S. Fruton: Some synthetic and hydrolytic experiments with chymotrypsin. J. Biol. Chem. 124, 321–329 (1938)Google Scholar
  15. 15.
    Bergmann, M. &H. Fraenkel-Conrat: The role of specificity in the enzymatic synthesis of proteins. J. Biol. Chem. 119, 707–720 (1937)Google Scholar
  16. 16.
    Biedermann, K., U. Montali, B. Martin, I. Svendsen &M. Ottesen: The amino acid sequence of proteinase A inhibitor 3 from baker's yeast. Carlsberg Res. Commun. 45, 225–235 (1980)CrossRefGoogle Scholar
  17. 17.
    Birktoft, J. J., D. M. Matthews, T. A. Poulus & J. Kraut: A crystallographic view of the serine protease mechanism. Abstract: V. Linderstrøm-Lang Conference. Vingsted, Denmark (1975)Google Scholar
  18. 18.
    Blobel, G. &B. Dobberstein: Transfer of proteins across membranes. J. Cell. Biol. 67, 835–851 (1975)PubMedCrossRefGoogle Scholar
  19. 19.
    Blow, D. M., J. J. Birktoft &B. S. Hartley: Role of a buried acid group in the mechanism of chymotrypsin. Nature 221, 337–340 (1969)PubMedCrossRefGoogle Scholar
  20. 20.
    Blumberg S. &B. L. Vallee: Superactivation of thermolysin by acylation with amino acid N-hydroxysuccinimide esters. Biochemistry 14, 2410–2419 (1975)PubMedCrossRefGoogle Scholar
  21. 21.
    Breddam, K.: Isolation and characterization of carboxypeptidase from yeast. Thesis, in Danish, University of Copenhagen, september (1975)Google Scholar
  22. 22.
    Breddam, K., T. J. Bazzone, B. Holmquist &B. L. Vallee: Carboxypeptidase of S. griseus. Implications of its characteristics. Biochemistry 18, 1563–1570 (1979)PubMedCrossRefGoogle Scholar
  23. 23.
    Breddam, K., F. Widmer &J. T. Johansen: Carboxypeptidase Y catalyzed transpeptidations and enzymatic peptide synthesis. Carlsberg Res. Commun. 45, 237–247 (1980)CrossRefGoogle Scholar
  24. 24.
    Breddam, K., F. Widmer &J. T. Johansen: Influence of the substrate structure on carboxypeptidase Y catalyzed peptide bond formation. Carlsberg Res. Commun. 45, 361–367 (1980)CrossRefGoogle Scholar
  25. 25.
    Breddam, K., F. Widmer &J. T. Johansen: Carboxypeptidase Y catalyzed C-terminal modifications of peptides. Carlsberg Res. Commun. 46, 121–128, (1981)CrossRefGoogle Scholar
  26. 26.
    Breddam, K., F. Widmer &J. T. Johansen: Carboxypeptidase Y catalyzed C-terminal modification in the B-chain of porcine insulin. Carlsberg Res. Commun. 46, 361–372 (1981)CrossRefGoogle Scholar
  27. 27.
    Breddam, K.: Modification of the single sulfhydryl group of carboxypeptidase Y with mercurials. Influence on enzyme specificity. Carlsberg Res. Commun 48, 9–19 (1983)CrossRefGoogle Scholar
  28. 28.
    Breddam, K., S. B. Søresen &M. Ottesen: Isolation of a carboxypeptidase from malted barley by affinity chromatography. Carlsberg Res. Commun. 48, 217–230 (1983)CrossRefGoogle Scholar
  29. 29.
    Breddam, K., F. Widmer &J. T. Johansen: Amino acid methyl esters as amine components in CPD-Y catalyzed peptide synthesis: Control of side-reactions. Carlsberg Res. Commun. 48, 231–237 (1983)CrossRefGoogle Scholar
  30. 30.
    Breddam, K. &M. Ottesen: Influence of guanidine derivatives on the specificity of malt carboxypeptidase. Carlsberg Res. Commun. 49, 573–582 (1983)Google Scholar
  31. 31.
    Breddam, K., J. T. Johansen &M. Ottesen: Carboxypeptidase Y catalyzed transpeptidation and condensation reactions. Carlsberg Res. Commun. 49, 457–462 (1984)CrossRefGoogle Scholar
  32. 32.
    Breddam, K. &J. T. Johansen: Semisynthesis of human insulin utilizing chemically modified carboxypeptidase Y. Carlsberg Res. Commun. 49, 463–472 (1984)CrossRefGoogle Scholar
  33. 33.
    Breddam, K. &M. Ottesen: Malt carboxypeptidase catalyzed aminolysis reactions. Carlsberg Res. Commun. 49, 473–481 (1984)CrossRefGoogle Scholar
  34. 34.
    Breddam, K.: Chemically modified carboxypeptidase Y with increased amidase activity. Carlsberg Res. Commun. 49, 535–554 (1984)CrossRefGoogle Scholar
  35. 35.
    Breddam, K.: Modification of amino acid residues in the S'1 binding site of carboxypeptidase Y. Carlsberg Res. Commun. 49, 627–638 (1984)Google Scholar
  36. 36.
    Breddam, K. &I. Svendsen: Identification of methionyl and cysteinyl residues in the subtrate binding site of carboxypeptidase Y. Carlsberg Res. Commun. 49, 639–646 (1984)Google Scholar
  37. 37.
    Breddam, K., S. B. Sørensen &M. Ottesen: Isolation of carboxypeptidase II from malted barley by affinity chromatography. Carlsberg Res. Commun. 50, 199–209 (1985)CrossRefGoogle Scholar
  38. 38.
    Breddam, K.: Enzymatic properties of malt carboxypeptidase II in hydrolysis and aminolysis reactions. Carlsberg Res. Commun 50, 309–323 (1985)CrossRefGoogle Scholar
  39. 39.
    Bunning, P. &H. Holzer: Characteristics and biological functions of proteinase inhibitors from yeast. In: Limited Proteolysis in Microorganisms, G. N. Cohen & H. Holzer eds. USA. Department of Health, Education and Welfare, pp. 81–85 (1978)Google Scholar
  40. 40.
    Campbell, P. N. &G. Blobel: The role of organelles in the chemical modification of the primary translation products of secretory proteins. FEBS Lett. 72, 215–226 (1976)PubMedCrossRefGoogle Scholar
  41. 41.
    Carey, W. F. &J. R. E. Wells: A Plant carboxy-peptidase of unique specificity. J. Biol. Chem. vol. 247, 5573–5579 (1972)PubMedGoogle Scholar
  42. 42.
    Chambers, J. L., G. G. Christoph, M. Krieger, L. Kay &R. M. Stroud: Silver ion inhibition of serine proteases: Chrystallographic study of silver trypsin. Biochem. Biophys. Res. Commun. 59, 70–74 (1974)PubMedCrossRefGoogle Scholar
  43. 43.
    Chu, F. K. &F. Maley: Stabilization of the structure and activity of yeast carboxypeptidase Y by its high-mannose oligosaccharide chains. Arch. Biochem. Biophys. 214, 134–139 (1982)PubMedCrossRefGoogle Scholar
  44. 44.
    Coletti-Priviero, M.-A., A. Priviero &E. Zuckerkandl: Separation of the proteolytic and esterasic activities of trypsin by reversible structural modifications. J. Mol. Biol. 39, 493–501 (1969)CrossRefGoogle Scholar
  45. 45.
    Distel, B., E. J. M. A. Al, H. F. Tabak &E. W. Jones: Synthesis and maturation of the yeast vacuolar enzymes carboxypeptidase Y and aminopeptidase I. Biochem. Biophys. Acta 741, 128–135 (1983)PubMedGoogle Scholar
  46. 46.
    Dobry, A., J. S. Fruton &J. M. Sturtevant: Thermodynamics of hydrolysis of peptide bonds. J. Biol. Chem. 195, 149–154 (1952)PubMedGoogle Scholar
  47. 47.
    Doi, E.: Stabilization of pig kidney cathepin A by sucrose and chloride ion, and inhibition of the enzyme activity by diisopropyl fluorophosphate and sulfhydryl reagents. J. Biochem. 75, 881–887 (1974)PubMedGoogle Scholar
  48. 48.
    Doi, E., Y. Kawamura, T. Matoba &T. Hata: Cathepsin A of two different molecular sizes in pig kidney, J. Biochem. 75, 889–894 (1974)PubMedGoogle Scholar
  49. 49.
    Doi, E., N. Komori, T. Matoba &Y. Morita: Some properties of carboxypeptidases in germinating rice seeds and rice leaves. Agric. Biol. Chem. 44, 77–83 (1980)Google Scholar
  50. 50.
    Doi, E., N. Komori, T. Matoba &Y. Morita: Purification and some properties of a carboxy-peptidase in rice bran. Agric. Biol. Chem. 44, 85–92 (1980)Google Scholar
  51. 51.
    Douglas, K. T., Y. Nakagawa &E. T. Kaiser: Mechanistic studies of carboxypeptidase Y. Kinetic detection of an acyl-enzyme intermediate in trimethylacetate esterase action. J. Am. Chem. Soc. 98, 8231–8236 (1976)PubMedCrossRefGoogle Scholar
  52. 52.
    Enari, T.-M.: Break-down of proteins during malting and mashing. EBC-symposium on the relationship between malt and beer. Hensinki, November (1980)Google Scholar
  53. 53.
    Fastrez, J. &A. R. Fersht: Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin. Biochemistry 12, 2025–2034 (1973)PubMedCrossRefGoogle Scholar
  54. 54.
    Fersht, A.: Enzyme structure and mechanism. Freeman, pp. 247–249, USA (1977)Google Scholar
  55. 55.
    Fink, A. L. &M. L. Bender: Binding sites for substrate leaving groups and added nucleophiles in papain-catalyzed hydrolyses. Biochemistry 8, 5109–5118 (1969)PubMedCrossRefGoogle Scholar
  56. 56.
    Fruton, J. S.: Proteinase-catalyzed synthesis of peptide bonds. In: Adv. Enzymol., A. Meister ed., John Wiley, New York, pp. 239–306 (1982)Google Scholar
  57. 57.
    Funakoshi, T., S. Shoji, R. Yokoyama, H. Ueki &Y. Kubota: The active site of carboxy-peptidase CU. I. Evidence for serine in the active sites of carboxypeptidase CUa and CUb. Chem. Pharm. Bull. 31, 198–203 (1983)Google Scholar
  58. 58.
    Gattner, H.-G., W. Danho, R. Knorr, V. Naithani &H. Zahn. Peptides 1980. Proceedings of the sixteenth European Peptide Symposium. Ed. K. Brunfeldt, Sciptor, Copenhagen 1981, pp. 372–377Google Scholar
  59. 59.
    Glazer, A. N.: Inhibition of serine esterases by phenylarsonic acids. J. Biol. Chem. 243, 3693–3701 (1968)PubMedGoogle Scholar
  60. 60.
    Glazer, A. N.: Esteratic reactions catalyzed by subtilisins. J. Biol. Chem. 242, 433–436 (1967)PubMedGoogle Scholar
  61. 61.
    Guegan, R. &J. Diaz: Large-scale synthesis of somatostatin. In: Perspectives in Peptide Chemistry, Karger, Basel, pp. 141–155 (1981)Google Scholar
  62. 62.
    Hartley, B. S.: Proteolytic enzymes. Ann. Rev. Biochem. 29, 45–72 (1960)PubMedCrossRefGoogle Scholar
  63. 63.
    Hashimoto, C., R. E. Cohen, W.-J. Zhang &C. E. Ballon: Carbohydrate chains on yeast carboxypeptidase Y are phosphorylated. Proc. Natl. Acad. Sci. USA 78, 2244–2248 (1981)PubMedCrossRefGoogle Scholar
  64. 64.
    Hasilik, A.: Biosynthesis of lysosomal enzymes. Trends Biochem. Sci. 5, 237–240 (1980)Google Scholar
  65. 65.
    Hasilik, A. &W. Tanner: Carbohydrate moiety of carboxypeptidase Y and perturbation of its biosynthesis. Eur. J. Biochem. 91, 567–575 (1978)PubMedCrossRefGoogle Scholar
  66. 66.
    Hasilik, A. &E. F. Neufeld: Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J. Biol. Chem. 255, 4937–4945 (1980)PubMedGoogle Scholar
  67. 67.
    Hasilik, A. &E. F. Neufeld: Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J. Biol. Chem. 255, 4946–4950 (1980)PubMedGoogle Scholar
  68. 68.
    Hayashi, R., S. Aibara &T. Hata: A unique carboxypeptidase activity of yeast protease C. Biochem. Biophys. Acta 212, 359–361 (1970)PubMedGoogle Scholar
  69. 69.
    Hayashi, R., Y. Bai &T. Hata: Evidence for an essential histidine in carboxypeptidase Y. Reaction with the chloromethylketone derivative of benzyloxocarbonyl-L-phenylalanine. J. Biol. Chem. 250, 5221–5226 (1975)PubMedGoogle Scholar
  70. 70.
    Hayashi, R., Y. Bai &T. Hata: Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates. J. Biochem. (Tokyo) 77, 69–79 (1975)Google Scholar
  71. 71.
    Hayashi, R., S. Moore &W. H. Stein: Serine at the active center of yeast carboxypeptidase. J. Biol. Chem. 248, 8366–8369 (1973)PubMedGoogle Scholar
  72. 72.
    Hayashi, R., S. Moore &W. H. Stein: Carboxy-peptidase from yeast. Large scale preparation and the application to COOH-terminal analysis of peptides and proteins. J. Biol. Chem. 248, 2296–2302 (1973)PubMedGoogle Scholar
  73. 73.
    Hayashi, R.: Carboxypeptidase Y. In: Methods Enzymol., L. Lorand, ed., Academic Press, vol. 45, pp. 568–587 (1976)Google Scholar
  74. 74.
    Hayashi, R.: Carboxypeptidase Y in sequence determination of peptides. Eds. C. H. W. Hirs & S. N. Timasheff, Academic Press. Methods Enzymol. 47, 84–93 (1977)Google Scholar
  75. 75.
    Hemmings, B. A., G. S. Zubenko, A. Hasilik &E. W. Jones: Mutant defective in processing of an enzyme located in the lysosome-like vacuole of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78, 435–439 (1981)PubMedCrossRefGoogle Scholar
  76. 76.
    Henderson, R.: Structure of crystalline α-chymotrypsin. IV. Structure of indoleacryloyl-α-chymotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J. Mol. Biol. 54, 341–354 (1970)PubMedCrossRefGoogle Scholar
  77. 77.
    Henderson, R., C. S. Wright, G. P. Hess &D. M. Blow: α-chymotrypsin: what can we learn about catalysis from X-ray diffraction. Cold Spring Harbor Symp. Quant. Biol. 36, 63–69 (1971)Google Scholar
  78. 78.
    Hernandez-Jodra, M. &C. Gancedo: Characterization of a carboxypeptidase from the yeast Rhodotorula glutinis. Hoppe-Seyler's Z. Physiol. Chem. 360, 581–586 (1979)PubMedGoogle Scholar
  79. 79.
    Hofmann, T.: Pencillocarboxypeptidases S-1 and S-2. In: Methods Enzymol., L. Lorand, ed., Academic Press, vol. XLV pp. 587–599 (1976)Google Scholar
  80. 80.
    Holmquist, B., S. Blumberg &B. L. Vallee: Superactivation of neutral proteases: acylation with N-hydroxysuccinimide esters. Biochemistry 15, 4675–4680 (1976)PubMedCrossRefGoogle Scholar
  81. 81.
    Homandberg, G. A., J. A. Mattis &M. Laskowsky: Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shifts peptide bond equilibria toward synthesis. Biochemistry 17, 5220–5227 (1978)PubMedCrossRefGoogle Scholar
  82. 82.
    Homandberg, G. A. &M. Laskowski: Enzymatic resynthesis of the hydrolyzed peptide bond(s) in ribonuclease S. Biochemistry 18, 586–592 (1979)PubMedCrossRefGoogle Scholar
  83. 83.
    Huber, R. &W. Bode: Structural basis of the activation and action of trypsin. Acc. Chem. Res. 11, 114–121 (1978)CrossRefGoogle Scholar
  84. 84.
    Hunkapiller, M. W., S. H. Smallcombe, D. R. Whitaker &J. H. Richards: Carbon nuclear magnetic resonance studies of the histidine residue in α-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochemistry 12, 4732–4743 (1973)PubMedCrossRefGoogle Scholar
  85. 85.
    Hunt, L. T. &O. Dayhoff: The occurrence in proteins of the tripeptides Asn-X-Ser and Asn-X-Thr and of bound carbohydrate. Biochem. Biophys. Res. Commun. 39, 7570765 (1970)CrossRefGoogle Scholar
  86. 86.
    Ichishima, E.: Purification and characterization of a new type of acid carboxypeptidase from aspergillus. Biochim. Biophys. Acta 258, 274–288 (1972)PubMedGoogle Scholar
  87. 87.
    Ichishima, E., S. Sonoki, K. Hirai, Y. Torii &S. Yokoyama: Comparative study on enzymatic properties of acid carboxypeptidase of molds of genus aspergillus. J. Biochem. (Tokyo) 72, 1045–1048 (1972)Google Scholar
  88. 88.
    Ichishima, E., Y. Tsuruda, T. Ushijima, T. Nomi, S. Suzuki, M. Takeuchi &A. Yamane: Soluble and bound forms of intracellular acid carboxypeptidase in Aspergillus saitoi. Current Microbiology 4, 85–89 (1980)CrossRefGoogle Scholar
  89. 89.
    Ichishima, E., K. Yoshimura &K. Tomoda: Acid carboxypeptidase from a wood-deteriorating basidiomycete, Pycnoporus sanguineus. Phytochemistry Vol. 22, 825–829 (1983)CrossRefGoogle Scholar
  90. 90.
    Ichishima, E. &K. Yomogida: Esterolytic activity of acid carboxypeptidase from Aspergillus satoi. Agr. Biol. Chem. 37, 693–694 (1973)Google Scholar
  91. 91.
    Ihle, J. N. &L. S. Dure: The developmental biochemistry of cottonseed embryogenesis and germination. I. J. Biol. Chem. 247, 5034–5040 (1972)PubMedGoogle Scholar
  92. 92.
    Ihle, J. N. &L. S. Dure: The developmental biochemistry of cottonseed embryogenesis and germination. II. Catalytic properties of the cotton carboxypeptidase. J. Biol. Chem. 247, 5041–5047 (1972)PubMedGoogle Scholar
  93. 93.
    Inagami, T. &T. Murachi: The mechanism of the specificity of trypsin catalysis. J. Biol. Chem. 239, 1395–1401 (1964)PubMedGoogle Scholar
  94. 94.
    Innouye, K., K. Watanabe, K. Morihara, Y. Tochino, T. Kanaya &S. Sakakibara: Enzyme-assisted semisynthesis of human insulin. J. Am. Chem. Soc. 101, 751–752 (1979)CrossRefGoogle Scholar
  95. 95.
    Isowa, Y., M. Ohmori, T. Ichikawa, H. Kurita, M. Sato &K. Mori: The synthesis of peptides by means of proteolytic enzymes. Bull. Chem. Soc. Japan 50, 2762–2765 (1977)CrossRefGoogle Scholar
  96. 96.
    Isowa, Y., M. Ohmori, M. Sato &K. Mori: The enzymatic synthesis of protected valine-5 angiotensin II amide-1. Bull. Chem. Soc. Japan 50, 2766–2772 (1977)CrossRefGoogle Scholar
  97. 97.
    Isowa, Y., T. Ichikawa &M. Ohmori: Peptide synthesis with proteinases. Fragment condensation of ZLeuGlnGlyOH or ZGlnGlyOH with HLeuValNH2 using metalloproteinases. Bull. Chem. Soc. Japan 51, 271–276 (1978)CrossRefGoogle Scholar
  98. 98.
    Johansen, J. T., K. Breddam &M. Ottesen: Isolation of carboxypeptidase Y by affinity chromatography. Carlsberg Res. Commun 41, 1–14 (1976)Google Scholar
  99. 99.
    Jonczyk, A. &H.-G. Gattner: Eine neue Semisynthese des Humaninsulins. Tryptisch-katalysierte Transpeptidierung von Schweineinsulin mit L-Threonin-tert-butylester. Hoppe-Seyler's Z. Physiol. Chem. 362, 1591–1598 (1981)PubMedGoogle Scholar
  100. 100.
    Kawamura, Y., T. Matoba, T. Hata &E. Doi: Purification and some properties of cathepsin A of large molecular size from pig kidney. J. Biochem. 76, 915–924 (1974)PubMedGoogle Scholar
  101. 101.
    Kawamura, Y., T. Matoba, T. Hata &E. Doi: Purification and some properties of cathepsin A of small molecular size from pig kidney. J. Biochem. 77, 729–737 (1975)PubMedGoogle Scholar
  102. 102.
    Kawamura, Y., T. Matoba &E. Doi: Subunit structure of pig kidney cathepsin A. J. Biochem. 88, 1559–1561 (1980)PubMedGoogle Scholar
  103. 103.
    Kawamura, Y., T. Matoba, T. Hata &E. Doi: Substrate specifities of cathepsin A,L and A,S from pig kidney. J. Biochem. 81, 435–441 (1977)PubMedGoogle Scholar
  104. 104.
    Kester, W. R. &B. W. Matthews: Comparison of the structures of carboxypeptidase A and thermolysin. J. Biol. Chem. 252, 7704–7710 (1977)PubMedGoogle Scholar
  105. 105.
    Koehler, K. A. &G. E. Lienhard: 2-phenylethaneboronic acid, a possible transition-state analog for chymotrypsin. Biochemistry 10, 2477–2483 (1971)PubMedCrossRefGoogle Scholar
  106. 106.
    Kominami, E., H. Hoffschulte &H. Holzer: Purification and properties of proteinase B from yeast. Biochem. Biophys. Acta 661, 124–135 (1981)PubMedGoogle Scholar
  107. 107.
    Kraut, J., J.D. Robertus, J.S. Birktoft &R.A. Alden: The aromatic substrate binding site in subtilisin BPN' and its resemblance to chymotrypsin. Cold Spring Habor Symp. Quant. Biol. 36, 117–123 (1971)Google Scholar
  108. 108.
    Kraut, J.: Serme proteases: structure and mechanism of catalysis. Ann. Rev. Biochem. 46, 331–358 (1977)PubMedCrossRefGoogle Scholar
  109. 109.
    Kubota, Y., S. Shoji, T. Funakoshi &H. Ueki: Carboxypeptidase CN. I. Purification and characterization of the enzyme from the exocarp of Citrus natsudaidai Hayata. J. Biochem. 74, 757–770 (1973)PubMedGoogle Scholar
  110. 110.
    Kubota, Y., S. Shoji, T. Funakoshi &H. Ueki: Carboxypeptidase CN. II. Stability and some chemical and kinetic properties. J. Biochem. 76, 375–384 (1974)PubMedGoogle Scholar
  111. 111.
    Kubota, Y., T. Funakoshi, S. Shoji, M. Moriyama &H. Ueki: Carboxypeptidases from the exocarp of mandarin orange. II. Chemical and enzymatic properties of carboxypeptidases CUa and CUb. Chem. Pharm. Bull. 12, 3479–3487 (1980)Google Scholar
  112. 112.
    Kubota, Y., T. Funakoshi, R. Yokoyama &S. Shoji: The active site of carboxypeptidase CU. II. Photooxidation of carboxypeptidases CUa and CUb. Chem. Pharm. Bull. 31, 1315–1319 (1983)Google Scholar
  113. 113.
    Kuhn, R. W., K. A. Walsh &H. Neurath: Reaction of carboxypeptidase C with group specific reagents. Biochemistry 15, 4881–4886 (1976)PubMedCrossRefGoogle Scholar
  114. 114.
    Kumagai, I., M. Yamasaki &N. Ui: Isolation, purification and some chemical properties of an acid carboxypeptidase from Aspergillus niger var. Macrosporus. Biochim. Biophys. Acta 659, 334–343 (1981)Google Scholar
  115. 115.
    Kumagai, I. &M. Yamasaki: Enzymatic properties of an acid carboxypeptidase from Aspergillus niger var. Macrosporus. Biochim. Biophys. Acta 659, 344–350 (1981)Google Scholar
  116. 116.
    Lenney, J. F., Ph. Matile, A. Wiemken, M. Schellenberg &J. Meyer: Activities and cellular location of yeast proteases and their inhibitors. Biochem. Biophys. Res. Commun. 60, 1378–1383 (1974)PubMedCrossRefGoogle Scholar
  117. 117.
    Lindquist, R. N. &C. Terry: Inhibition of subtilisin by boronic acids, potential analogs of tetrahedral reaction intermediate. Arch. Biochem. Biophys. 160, 135–144 (1974)PubMedCrossRefGoogle Scholar
  118. 118.
    Maier, H., H. Müller, R. Tesch, I. Witt &H. Holzer: Amino acid sequence of yeast proteinase B inhibitor 1. Comparison with inhibitor 2. Biochem. Biophys. Res. Commun. 91, 1390–1398 (1979)PubMedCrossRefGoogle Scholar
  119. 119.
    Maier, H., H. Müller, R. Tesch, I. Witt &H. Holzer: Primary structure of yeast proteinase B inhibitor 2. J. Biol. Chem. 254, 12555–12561 (1979)PubMedGoogle Scholar
  120. 120.
    Margolis, H., Y. Nakagawa, K. Douglas &E. Kaiser: Multiple forms of carboxypeptidase Y from Saccharomyces cerevisiae. Kinetic demonstration of effects of carbohydrate residues on the catalytic mechanism of a glycoenzyme. J. Biol. Chem. 253, 7891–7897 (1978)PubMedGoogle Scholar
  121. 121.
    Markley, J. L., D. E. Neves, W. M. Whesyler, I. B. Ibanez, M. A. Porubcan &M. Baillargeon: Nuclear magnetic resonance studies of serine proteases. Dev. Biochem. 10, 31–61 (1980)Google Scholar
  122. 122.
    Martin, B. M., R. W. A. Oliver, J. T. Johansen &T. Viswanatha: The carboxypeptidase Y catalyzed hydrolysis of indoleacryloylimidazole. Carlsberg Res. Commun. 45, 69–78 (1980)CrossRefGoogle Scholar
  123. 123.
    Martin, B., I. Svendsen, M. Ottesen: Use of carboxypeptidase Y for carboxy terminal sequence determinations. Carlsberg Res. Commun. 42, 99–102 (1977)CrossRefGoogle Scholar
  124. 124.
    Martin, B. M., I. Svendsen, T. Viswanatha &J. T. Johansen: Amino acid sequence of carboxypeptidase Y. I. Peptides from cleavage with cyanogen bromide. Carlsberg Res. Commun. 47, 1–13 (1982)Google Scholar
  125. 125.
    Matern, H., M. Hoffmann &H. Holzer: Isolation and characterization of the carboxypeptidase Y inhibitor from yeast. Proc. Nat. Acad. Sci. 71, 4874–4878 (1974)PubMedCrossRefGoogle Scholar
  126. 126.
    Matile, P. H.: Biochemistry and function of vacuoles. Ann. Rev. Plant Physiol. 29, 193–213 (1978)CrossRefGoogle Scholar
  127. 127.
    Matoba, T. &E. Doi: Purification and characterization of carboxypeptidases from the sarcocarp of watermelon. Agric. Biol. Chem. 38, 1891–1899 (1974)Google Scholar
  128. 128.
    Matoba, T. &E. Doi: Carboxypeptidase activity of tomato fruit during the ripening process and some enzymatic properties. Agr. Biol. Chem. 38, 1901–1905 (1974)Google Scholar
  129. 129.
    Matoba, T. &E. Doi: Substrate specificity of carboxypeptidase from watermelon. J. Biochem. 77, 1297–1303 (1975)PubMedGoogle Scholar
  130. 130.
    Matsuda, K. &E. Misaka: Studies on cathepsins of rat liver lysosomes. II. Comparative studies on multiple forms of cathepsin A. J. Biochem. 78, 31–39 (1975)PubMedGoogle Scholar
  131. 131.
    Matthews, B. W., P. B. Sigler, R. Henderson &D. M. Blow: Three-dimensional structure of tosyl-α-chymotrypsin. Nature 214, 652–656 (1967)PubMedCrossRefGoogle Scholar
  132. 132.
    Matthews, D. A., R. A. Alden, J. J. Birktoft, S. T. Freer &J. Kraut: X-ray crystallographic study of boronic acid adducts with subtilisin BPN'(Novo). A model for the catalytic transition state. J. Biol. Chem. 250, 7120–7126 (1975)PubMedGoogle Scholar
  133. 133.
    Matthews, D. A., R. A. Alden, J. J. Birktoft, S. T. Freer &J. Kraut: Re-examination of the charge relay system in subtilisin and comparison with other serine proteases. J. Biol. Chem. 252, 8875–8883 (1977)PubMedGoogle Scholar
  134. 134.
    Mechler, B., M. Muller, H. Muller, F. Meussdoerffer &D. H. Wolf: In vivo biosynthesis of the vacuolar proteinases A and B in the yeast saccharomyces cerevisiae. J. Biol. Chem. 257, 11203–11206 (1982)PubMedGoogle Scholar
  135. 135.
    Mikola, L. &J. Mikola: Mobilization of proline in the starchy endosperm of germinating barley grain. Planta 149, 149–154 (1980)CrossRefGoogle Scholar
  136. 136.
    Morihara, K. &T. Oka: α-chymotrypsin as the catalyst for peptide synthesis. Biochem. J. 163, 531–542 (1977)PubMedGoogle Scholar
  137. 137.
    Morihara, K., T. Oka &H. Tsuzuki: Semisynthesis of human insulin by trypsin-catalyzed replacement of Ala-B 30 by Thr in porcine insulin. Nature 280, 412–413 (1979)PubMedCrossRefGoogle Scholar
  138. 138.
    Morihara, K., T. Oka, H. Tsuzuki, Y. Tochino &T. Kanaya: Achromobacter protease I —catalyzed conversion of porcine insulin into human insulin. Biochem. Biophys. Res. Commun. 92, 396–402 (1980)PubMedCrossRefGoogle Scholar
  139. 139.
    Müller, M. &H. Müller: Synthesis and processing of in vitro and in vivo precursors of the vacuolar yeast enzyme carboxypeptidase Y. J. Biol. Chem. 256, 11962–11965 (1982)Google Scholar
  140. 140.
    Nakadai, T., S. Nasuno &N. Iguchi: Purification and properties of acid carboxypeptidase I from Aspergillus oryzae. Agric. Biol. Chem. 36, 1343–1352 (1972)Google Scholar
  141. 141.
    Nakadai, T., S. Nasuno &N. Iguchi: Purification and properties of acid carboxypeptidase II from Aspergillus oryzae. Agric. Biol. Chem. 36, 1473–1480 (1972)Google Scholar
  142. 142.
    Nakadai, T., S. Nasuno &N. Iguchi: Purification and properties of acid carboxypeptidase III from Aspergillus oryzae. Agric. Biol. Chem. 36, 1481–1488 (1972)Google Scholar
  143. 143.
    Nakadai, T., S. Nasuno &B. Iguchi: Purification and properties of acid carboxypeptidase IV from Aspergillus oryzae. Agric. Biol. Chem. 37, 1237–1251 (1973)Google Scholar
  144. 144.
    Neurath, H.: Limited proteolysis and zymogen activation. Cold Spring Harbor Conf. Cell. Proliferation 2, 51–64 (1975)Google Scholar
  145. 145.
    Neurath, H. &K. A. Walsh: Role of proteolytic enzymes in biological regulation. Proc. Natl. Acad. Sci. USA 73, 3825–3832 (1976)PubMedCrossRefGoogle Scholar
  146. 146.
    Nunez de Castro, I. &H. Holzer: Studies on the proteinase A inhibitor IA 3 from yeast. Hoppe-Seyler's Z. Physiol. Chem. 357, 727–734 (1976)PubMedGoogle Scholar
  147. 147.
    Odya, C. E. & E. G. Erdös: Human prolylcarboxypeptidase. Methods in Enzymology Vol. 80 (ed. L. Lorand) pp. 460–466 (1981)Google Scholar
  148. 148.
    Odya, C. E., D. V. Marinkovic, K. J. Hammon, T. A. Stewart &E. G. Erdös: Purification and properties of prolylcarboxypeptidase (angiotensinase C) from human kidney. J. Biol. Chem. 253, 5927–5931 (1978)PubMedGoogle Scholar
  149. 149.
    Oka, T. &K. Morihara: Trypsin as a catalyst for peptide synthesis. J. Biochem. 82, 1055–1062 (1977)PubMedGoogle Scholar
  150. 150.
    Ong, E. B., E. Shaw &G. Schoellmann: An active center histidine peptide of α-chymotrypsin. J. Amer. Chem. Soc. 86, 1271–1272 (1964)CrossRefGoogle Scholar
  151. 151.
    Oosterban, R. A., P. Kunst &J. A. Cohen: The nature of the reaction between diisopropylfluorophosphate and chymotrypsin. Biochem. Biophys. Acta 16, 299–300 (1955)CrossRefGoogle Scholar
  152. 152.
    Preston, K. R. &J. E. Kruger: Purification and properties of two proteolytic enzymes with carboxypeptidase activity in germinated wheat. Plant Physiol. 58, 516–520 (1976)PubMedGoogle Scholar
  153. 153.
    Quicho, F. A. &W. N. Lipscomb: Carboxypeptidase A: A protein and an enzyme. Adv. Protein Chem. 25, 1–53 (1971)Google Scholar
  154. 154.
    Ray, L. E.: Large scale isolation and partial characterization of some carboxypeptidases from malted barley. Carlsberg Res. Commun 41, 169–182 (1976)CrossRefGoogle Scholar
  155. 155.
    Richarz, R., I. I. Tschesche &K. Wüthrich: Carbon-13 NMR studies of the selectively isotope-labeled reactive site peptide bond of the basic pancreatic trypsin inhibitor with trypsin, trypsinogen and anhydrotrypsin. Biochemistry 19, 5711–5715 (1980)PubMedCrossRefGoogle Scholar
  156. 156.
    Riechmann &V. Kasche: Kinetic studies on the mechanism and the specificity of peptide semisynthesis catalyzed by α-chymotrypsin and β-trypsin. Biochem. Biophys. Res. Commun. 120, 686–691 (1984)PubMedCrossRefGoogle Scholar
  157. 157.
    Riordan, J. F.: Arginyl residues and anion binding sites in proteins. Molec. Cell. Biochem. 26, 71–92 (1979)PubMedGoogle Scholar
  158. 158.
    Robertus, J. D., R. A. Alden, J. J. Birktoft, J. Kraut, J. C. Powers &P. E. Wilcox: An X-ray crystallographic study of the binding of peptide chloromethyl ketone inhibitors to subtilisin BPN. Biochemistry 11, 2439–2449 (1972)PubMedCrossRefGoogle Scholar
  159. 159.
    Robertus, J. D., J. Kraut, R. A. Alden &J. J. Birktoft: Subtilisin: a stereochemical mechanism involving transition-state stabilisation. Biochemistry 11, 4293–4303 (1972)PubMedCrossRefGoogle Scholar
  160. 160.
    Royer, P.G. &G.M. Anantharmaiah: Peptide synthesis in water and the use of immobilized carboxypeptidase Y for deprotection. J. Am. Chem. Soc. 101, 3394–3396 (1979)CrossRefGoogle Scholar
  161. 161.
    Saheki, T., Y. Matsuda &H. Holzer: Purification and characterization of macromolecular inhibitors of proteinase A from yeast. Eur. J. Biochem. 47, 325–332 (1974)PubMedCrossRefGoogle Scholar
  162. 162.
    Sanborn, D.M. &G.E. Hein: The interaction of trypsin with neutral substrates and modifiers. Biochemistry 10, 3616–3627 (1968)CrossRefGoogle Scholar
  163. 163.
    Schechter, I. &B. Berger: On the size of the active site of proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967)PubMedCrossRefGoogle Scholar
  164. 164.
    Schilf, W. &H. H. Martin: Purification of two D,D-carboxypeptidases/transpeptidases with different penicillin sensitivities from Proteus mirabilis. Eur. J. Biochem. 105, 361–370 (1980)PubMedCrossRefGoogle Scholar
  165. 165.
    Schroeder, R. L. &W. C. Burger: Development and localization of carboxypeptidase activity in embryo-less barley half-kernels. Plant Physiol. 62, 458–462 (1978)PubMedGoogle Scholar
  166. 166.
    Schwaiger, H., A. Hasilek, K. von Figura, A. Wiemken &W. Tanner: Carbohydrate-free carboxypeptidase Y is transferred into the vacuole. Biochem. Biophys. Res. Commun. 104, 950–956 (1982)PubMedCrossRefGoogle Scholar
  167. 167.
    Segal, D. M., J. C. Powers, G. H. Cohen, D. R. Dawes &P. E. Wilcox: Substrate binding site in bovine chymotrypsin A. A crystallographic study using peptide chloromethyl ketones as site-specific inhibitors. Biochemistry 10, 3728–3738 (1971)PubMedCrossRefGoogle Scholar
  168. 168.
    Shaw, E., M. Mares-Guia &W. Cohen: Evidence for an active-center histidine in trypsin through use of a specific reagent, 1-chloro-3-tosy-lamido-7-amino-2-heptanone, the chloromethyl ketone derived from Nα-tosyl-L-lysine. Biochemistry 4, 2219–2224 (1965)CrossRefGoogle Scholar
  169. 169.
    Shotton, D. M. &H. C. Watson: The three dimensional structure of crystalline porcine pancreatic elastase. Nature 225, 811–816 (1970)PubMedCrossRefGoogle Scholar
  170. 170.
    Skudlarek, M. D. &R. T. Swank: Biosynthesis of two lysosomal enzymes in macrophages. Evidence for a precursor of β-galactosidase. J. Biol. Chem. 254, 9939–9942 (1979)PubMedGoogle Scholar
  171. 171.
    Sprössler, B., H.-D. Heilmann, E. Grampp &H. Uhlig: Eigenschaften der Carboxypeptidase C aus Orangenblättern. Hoppe-Seyler's Z. Physiol Chem. 352, 1524–1530 (1971)PubMedGoogle Scholar
  172. 172.
    Steiner, D. F., W. Kemmler, H. S. Tager, A. H. Rubinstein, A. Lernmark &H. Zühlke: Proteolytic mechanisms in the biosynthesis of polypeptide hormones. Cold Spring Harbor Conf. Cell. Proliferation 2, 531–549 (1975)Google Scholar
  173. 173.
    Steitz, T. A., R. Henderson &D. M. Blow: Structure of crystalline α-chymotrypsin. III. Crystallographic studies of substrates and inhibitors. J. Mol. Biol. 46, 337–348 (1969)PubMedCrossRefGoogle Scholar
  174. 174.
    Steitz, T. A. &R. G. Schulman: Crystallographic and NMR studies of the serine proteases. Ann. Rev. Biophys. Bioeng. 11, 419–444 (1982)CrossRefGoogle Scholar
  175. 175.
    Stevens, T., B. Esmon &R. Scheckman: Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y into the vacuole. Cell 30, 439–448 (1982)PubMedCrossRefGoogle Scholar
  176. 176.
    Stevens, T. H., E. G. Blachly, C. P. Hunter. J. H. Rothman & L. A. Walls: Translocation, sorting and transport of yeast vacuolar glycoproteins. In: Yeast Cell Biology. UCLA Symposia on molecular and cellular biology, J. Hicks, ed., Alan R. Liss Inc. New York. in pressGoogle Scholar
  177. 177.
    Stroud, R. M., L. M. Kay &R. E. Dickerson: The structure of bovine trypsin: Electron density maps of the inhibited enzyme at 5 Å and 2.7 Å resolution. J. Mol. Biol. 83, 185–208 (1974)PubMedCrossRefGoogle Scholar
  178. 178.
    Svendsen, I.: Chemical modifications of the subtilisins with special reference to the binding of large substrates. A review. Carlsberg Res. Commun. 41, 237–291 (1976)CrossRefGoogle Scholar
  179. 179.
    Svendsen, I., B. M. Martin, T. Viswanatha &J. T. Johansen: Amino acid sequence of carboxypeptidase Y. II. Peptides from enzymatic cleavages. Carlsberg Res. Commun. 47, 15–27 (1982)Google Scholar
  180. 180.
    Takeuchi, M., T. Ushijima &E. Ichishima: A new acid carboxypeptidase, O-1, from Aspergillus oryzae. Current microbiology 7, 19–23 (1982)CrossRefGoogle Scholar
  181. 181.
    Takeuchi, M. &E. Ichishima: Mode of action of a new Aspergillus oryzae carboxypeptidase O-1. Agric. Biol. Chem. 45, 1033–1035 (1981)Google Scholar
  182. 182.
    Tanizawa, K., M. Nakowo, W. B. Lawson &Y. Kanaoka: Essential roles of alkylammonium and alkylguanidinium ions in trypsin catalyzed hydrolysis of acetylglycine esters: enhancement of catalytic efficiency analyzed by the use of inverse substrates. J. Biochem. 92, 945–951 (1982)PubMedGoogle Scholar
  183. 183.
    Trimble, R. B. &F. Maley: The use of endo-β-N-acetylglucosaminidase H in characterizing the structure and function of glycoproteins. Biochem. Biophys. Res. Commun. 78, 935–944 (1977)PubMedCrossRefGoogle Scholar
  184. 184.
    Trimble, R. B., F. Maley &F. K. Chu: Glycoprotein biosynthesis in yeast. Protein conformation affects processing of high mannose oligosaccharides on carboxypeptidase Y and invertase. J. Biol. Chem. 258, 2562–2567 (1983)PubMedGoogle Scholar
  185. 185.
    Tschesche, H.: Carboxypeptidase C. Eds. C. H. W. Hirs & S. N. Timasheff, Academic Press. Methods Enzymol. 47, 73–84 (1977)Google Scholar
  186. 186.
    Tsuzuki, H., T. Oka &K. Morihara: Coupling between Cbz-Arg-OH and Leu-X catalyzed by trypsin and papain. J. Biochem. (Tokyo) 88, 669–675 (1980)Google Scholar
  187. 187.
    Umetsu, H., H. Matsuoka &E. Ichishima: Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase. J. Agric. Food Chem. 31, 50–53 (1983)CrossRefGoogle Scholar
  188. 188.
    Umetsu, H., M. Abe, Y. Sugawara, T. Nakai, S. Watanabe &E. Ichishima: Purification, crystallisation and characterisation of carboxypeptidase from wheat bran. Food Chemistry 7, 125–138 (1981)CrossRefGoogle Scholar
  189. 189.
    Vajda, T. &T. Szabo: Effect of methylamine on trypsin catalysis. Eur. J. Biochem. 85, 121–124 (1978)PubMedCrossRefGoogle Scholar
  190. 190.
    Visuri, K., J. Mikola &T. M. Enari: Isolation and partial characterization of a carboxypeptidase from barley. Eur. J. Biochem. 7, 193–199 (1969)PubMedCrossRefGoogle Scholar
  191. 191.
    Walker-Simmons, M. &C. A. Ryan: Isolation and properties of carboxypeptidase from leaves of wounded tomato plants. Phytochemistry 19, 43–47 (1980)CrossRefGoogle Scholar
  192. 192.
    Wang, S. S. &F. H. Carpenter: Kinetics of the tryptic hydrolysis of the oxidized B chain of bovine insulin. Biochemistry 6, 215–224 (1967)PubMedCrossRefGoogle Scholar
  193. 193.
    Waxman, D. J. &J. L. Strominger: Sequence of active site peptides from the penicillin sensitive D-alanine carboxypeptidase of Bacillus subtilis. J. Biol. Chem. 255, 3964–3976 (1980)PubMedGoogle Scholar
  194. 194.
    Webb, J. L.: Mercurials. In: Enzyme and Metabolic Inhibitors. Academic Press, Vol. II, p. 729 (1963)Google Scholar
  195. 195.
    Widmer, F. &J. T. Johansen: Enzymatic peptide synthesis. Carboxypeptidase Y catalyzed formation of peptide bonds. Carlsberg Res. Commun. 44, 37–46 (1979)CrossRefGoogle Scholar
  196. 196.
    Widmer, F., K. Breddam &J. T. Johansen: Carboxypeptidase Y catalyzed peptide synthesis using amino acid alkyl esters as amine components. Carlsberg Res. Commun. 45, 453–463 (1980)CrossRefGoogle Scholar
  197. 197.
    Widmer, F., K. Breddam &J. T. Johansen: Influence of the structure of amine components on carboxypeptidase Y catalyzed amide bond formation. Carlsberg Res. Commun. 46, 97–106 (1981)Google Scholar
  198. 198.
    Widmer, F., K. Breddam &J. T. Johansen: Carboxypeptidase Y as a catalyst for peptide synthesis in aqueous phase with minimal protection. In: Proc. 16th European Peptide Symposium. K. Brunfeldt ed., Scriptor. Copenhagen pp. 46–55 (1981)Google Scholar
  199. 199.
    Winther, J. R., M. C. Kielland-Brandt &K. Breddam: Increased hydrophobicity of the S′1 binding site in carboxypeptidase Y obtained by site-directed mutagenesis. Carlsberg Res. Commun. 50, 273–284 (1985)CrossRefGoogle Scholar
  200. 200.
    Yabuuchi, S., E. Doi &T. Hata: Studies on malt carboxypeptidases. Nippon Nogei Kagaku Kaishi 46, 591–596 (1972)Google Scholar
  201. 201.
    Yocum, R. R., J. R. Rasmussen &J. L. Strominger: The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. J. Biol. Chem. 255, 3977–3986 (1980)PubMedGoogle Scholar
  202. 202.
    Yokoyama, S., A. Oobayashi, O. Tanabe, S. Sugawara, E. Araki &E. Ichishima: Production and some properties of a new type of acid carboxypeptidase of Penicillium Molds. Applied Microbiology 27, 953–960 (1974)PubMedGoogle Scholar
  203. 203.
    Yokoyama, S., A. Oobayashi, O. Tanabe &E. Ichishima: Large scale production of acid carboxypeptidase from submerged culture of Penicillum janthinellum, and stability of the crystalline enzyme. Agric. Biol. Chem. 39, 1211–1217 (1975)Google Scholar
  204. 204.
    Zuber, H. &P. H. Matile: Acid carboxypeptidases: Their occurence in plants, intracellular distribution and possible function. Z. Naturforsch. 23b, 663–665 (1968)Google Scholar
  205. 205.
    Zuber, H.: Reinigung und Eigenschaften der Carboxypeptidase aus Citrusfrüchten. Hoppe-Seyler's Z. Physiol. Chem. 349, 1337–1352 (1968)PubMedGoogle Scholar
  206. 206.
    Zoller, M. &M. Smith: Oligonucleotide-directed mutagenesis of DNA fragments cloned into M 13 vectors. Methods Enzymol. 100, 408–500 (1983)Google Scholar

Copyright information

© Carlsberg Laboratory 1986

Authors and Affiliations

  • Klaus Breddam
    • 1
  1. 1.Department of ChemistryCarlsberg LaboratoryCopenhagen Valby

Personalised recommendations