Zeitschrift für Physik C Particles and Fields

, Volume 69, Issue 1, pp 627–633 | Cite as

The higgs boson mass from precision electroweak data

  • John Ellis
  • G. L. Fogli
  • E. Lisi


We present a new global fit to precision electroweak data, including new low- and high-energy data and analyzing the radiative corrections arising from the minimal symmetry breaking sectors of the Standard Model (SM) and its supersymmetric extension (MSSM). It is shown that present data favor a Higgs mass ofO(M z):M H=76 −50 +152 GeV.

We confront our analysis with (meta) stability and perturbative bounds on the SM Higgs mass, and the theoretical upper bound on the MSSM Higgs mass. Present data do not discriminate significantly between the SM and MSSM Higgs mass ranges. We comment in passing on the sensitivity of the Higgs mass determination to the values ofα(M z) andα s(M z).


Higgs Mass Radiative Correction Vacuum Metastability Precision Electroweak Data Standard Model Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    CDF Collaboration, F. Abe et al.: Phys. Rev. Lett. 74 (1995) 2676Google Scholar
  2. 2.
    D0 Collaboration, S. Abachi et al.: Phys. Rev. Lett. 74 (1995) 2632CrossRefADSGoogle Scholar
  3. 3.
    J. Ellis, G.L. Fogli, E. Lisi: Phys. Lett. B333 (1994) 118ADSGoogle Scholar
  4. 4.
    The LEP Collaborations ALEPH, DELPHI, L3 and OPAL, and the LEP Electroweak Working Group, CERN Report No. LEPEWWG/95-01Google Scholar
  5. 5.
    G. Altarelli, R. Barbieri, F. Caravaglios: Nucl. Phys. B405 (1994) 3; J. Erler, P. Langacker: Phys. Rev. D52 (1995) 441; G. Montagna, O. Nicrosini, G. Passarino, F. Piccinini: Phys. Lett. B335 (1994) 484; V.A. Novikov, L.B. Okun, A.N. Rozanov, M.I. Vysotskii, V.P. Yurov: Phys. Lett. B331 (1994) 433; D. Schaile: Fortschr. Phys. 429 (1994) 429ADSGoogle Scholar
  6. 6.
    G.’t Hooft: Nucl. Phys. B35 (1971) 167; ibidem B37 (1971) 195CrossRefADSGoogle Scholar
  7. 7.
    M. Veltman: Nucl. Phys. B123 (1977) 89; Acta Phys. Polon. 8 (77) 475CrossRefADSGoogle Scholar
  8. 8.
    U. Amaldi et al.: Phys. Rev. D36 (1987) 1385; G. Costa et al., Nucl. Phys. B297 (1988) 244; J. Ellis and G.L. Fogli, Phys. Lett. B213 (1988) 526ADSGoogle Scholar
  9. 9.
    G. Altarelli, R. Kleiss, C. Verzegnassi eds., Z Physics at LEP I, CERN Report No. 89-08 (Geneva, 1989) and references thereinGoogle Scholar
  10. 10.
    J. Ellis, G.L. Fogli: Phys. Lett. B231 (1989) 189; ibidem B232 (1989) 139.ADSGoogle Scholar
  11. 11.
    J. Ellis, G.L. Fogli, E. Lisi: Phys. Lett. B292 (1992) 427ADSGoogle Scholar
  12. 12.
    J. Ellis, G.L. Fogli, E. Lisi: Phys. Lett. B249 (1990) 543; ibidem B274 (1992) 456ADSGoogle Scholar
  13. 13.
    F. del Aguila, M. Martinez, M. Quirós: Nucl. Phys. B381 (1992) 451; V.A. Novikov, L.B. Okun, M.I. Vysotskii, V.P. Yurov: Phys. Lett. B308 (1993) 123CrossRefADSGoogle Scholar
  14. 14.
    P.H. Chankowski, S. Pokorski: Max-Planck Institute Report No. MPI-Ph/95-39Google Scholar
  15. 15.
    G. Altarelli, I. Isidori: Phys. Lett. B337 (1994) 141; J.A. Casas, J.R. Espinosa, M. Quirós: Phys. Lett. B342 (1995) 171. for earlier calculations see: N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio: Nucl. Phys. B158 (1979) 295; M. Linder, Z. Phys. C31 (1986) 295; M. Sher, Phys. Rep. 179 (1989) 273; Phys. Lett. B317 (1993) 159; ibidem, B331 (1994) 448ADSGoogle Scholar
  16. 16.
    J.R. Espinosa, M. Quirós: Phys. Lett. B353 (1995) 257ADSGoogle Scholar
  17. 17.
    M. Sher: Phys. Rep. 179 (1989) 274CrossRefADSGoogle Scholar
  18. 18.
    J. Ellis, G.L. Fogli, E. Lisi: Phys. Lett. B343 (1995) 282ADSGoogle Scholar
  19. 19.
    S. Eidelman, F. Jegerlehener: Z. Phys. C67 (1995) 585ADSGoogle Scholar
  20. 20.
    A.D. Martin, D. Zeppenfeld: Phys. Lett. B345 (1995) 558ADSGoogle Scholar
  21. 21.
    H. Burkhardt, B. Pietrzyk: Phys. Lett. B356 (1995) 398ADSGoogle Scholar
  22. 22.
    M.L. Swartz: Report No. SLAC-PUB-6710 (revised version)Google Scholar
  23. 23.
    B. Lee Roberts (BNL E821), Z. Phys. C56 (1992) S101Google Scholar
  24. 24.
    CDF Collaboration, F. Abe et al.: Phys. Rev. D50 (1994) 2966; Phys. Rev. Lett. 73 (1994) 225ADSGoogle Scholar
  25. 25.
    D0 Collaboration, S. Abachi et al.: Phys. Rev. Lett. 72 (1994) 2138CrossRefADSGoogle Scholar
  26. 26.
    E. Laenen, J. Smith, W. van Neerven: Phys. Lett. B321 (1994) 254 and references thereinADSGoogle Scholar
  27. 27.
    SLD Collaboration, as presented at CERN by C. Baltay (June 1995)Google Scholar
  28. 28.
    SLD Collaboration, K. Abe et al.: Phys. Rev. Lett. 73 (1994) 25CrossRefADSGoogle Scholar
  29. 29.
    CDF Collaboration, F. Abe et al.: Report No. FERMILAB-PUB-95-033 (1995), to appear in Phys. Rev. D.Google Scholar
  30. 30.
    N.H. Edwards et al.: Phys. Rev. Lett. 74 (1995) 2654CrossRefADSGoogle Scholar
  31. 31.
    P.A. Vetter et al.: Phys. Rev. Lett. 74 (1995) 2658CrossRefADSGoogle Scholar
  32. 32.
    M.C. Noecker, B.P. Masterson, C.E. Wieman: Phys. Rev. Lett. 61 (1988) 310CrossRefADSGoogle Scholar
  33. 33.
    CHARM-II Collaboration, P. Vilain et al.: Phys. Lett. B281 (1992) 159ADSGoogle Scholar
  34. 34.
    M. Swartz, private communication (1995)Google Scholar
  35. 35.
    S. Bethke, Physikalisches Institut (Aachen) Report No. PITHA-94-30 (1994)Google Scholar
  36. 36.
    F. Jegerlehner: in Testing the Standard Model, M. Cvetič, P. Langacker eds. (World Scientific, Singapore, 1991) p.476; Prog. Part. Nucl. Phys. 27 (1991) 32Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • John Ellis
    • 1
  • G. L. Fogli
    • 2
  • E. Lisi
    • 2
    • 3
  1. 1.Theory DivisionCERNGenevaSwitzerland
  2. 2.Dipartimento di Fisica and Sezione INFN di BariBariItaly
  3. 3.Institute for Advanced StudyPrincetonUSA

Personalised recommendations