Acta Mathematica Hungarica

, Volume 76, Issue 1–2, pp 155–171 | Cite as

Extensions of walsh’s equiconvergence theorem for jordan domains with analytic boundary curve

  • R. Brück


Holomorphic Function Power Series Expansion Hermite Interpolation Jordan Domain Faber Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Brück, On the failure of Walsh’s equiconvergence theorem for Jordan domains,Analysis,13 (1993), 229–234.MathSciNetMATHGoogle Scholar
  2. [2]
    R. Brück, An extension of a result of Cavaretta, Sharma and Varga on Walsh equiconvergence,J. Indian Math. Soc., to appear.Google Scholar
  3. [3]
    R. Brück, A. Sharma and R. S. Varga, An extension of a result of Rivlin on Walsh equiconvergence, inAdvances in Computational Mathematics (New Delhi, India, 1993), Ed. H. P. Dikshit and C. A. Micchelli, World Scientific Publishing Co. Ptl. Ltd. (Singapore, 1994), pp. 225–234.Google Scholar
  4. [4]
    R. Brück, A. Sharma and R. S. Varga, An extension of a result of Rivlin on Walsh equiconvergence (Faber nodes), inApproximation and Computation, A Festschrift in Honor of Walter Gautschi, Ed. R. Zahar, International Series of Numerical Mathematics, Vol. 119, Birkhäuser (Boston-Basel-Berlin, 1995), pp. 41–66.Google Scholar
  5. [5]
    A. S. Cavaretta Jr., A. Sharma and R. S. Varga, Interpolation in the roots of unity: An extension of a theorem of J. L. Walsh,Resultate Math.,3 (1980), 155–191.MathSciNetMATHGoogle Scholar
  6. [6]
    J. H. Curtiss, Convergence of complex Lagrange interpolation polynomials on the locus of the interpolation points,Duke Math. J.,32 (1965), 187–204.CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    J. H. Curtiss, Faber polynomials and the Faber series,Amer. Math. Monthly,78 (1971), 577–596.CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    D. Gaier,Lectures on Complex Approximation, Birkhäuser (Boston, 1987).Google Scholar
  9. [9]
    T. Kövari and Ch. Pommerenke, On Faber polynomials and Faber expansions,Math. Z.,99 (1967), 193–206.CrossRefMathSciNetMATHGoogle Scholar
  10. [10]
    Ch. Pommerenke, Über die Verteilung der Fekete-Punkte,Math. Ann.,168 (1967), 111–127.CrossRefMathSciNetMATHGoogle Scholar
  11. [11]
    T. J. Rivlin, On Walsh equiconvergence,J. Approx. Theory,36 (1982), 334–345.CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    J. L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain, Fifth Edition, American Math. Soc. (Providence, R.I., 1969).Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • R. Brück
    • 1
  1. 1.Mathematisches InstituteJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations