Advertisement

Cluster expansion approach to the effective potential in Φ 2+1 4 -theory

  • A. Peter
  • J. M. Häuser
  • M. H. Thoma
  • W. Cassing
Article

Abstract

We apply a truncated set of dynamical equations of motion for connected equal-time Green functions up to the 4-point level to the investigation of spontaneous ground state symmetry breaking in Φ 2+1 4 quantum field theory. Within our momentum space discretization we obtain a second order phase transition as soon as the connected 3-point function is included. However, an additional inclusion of the connected 4-point function still shows a significant influence on the shape of the effective potential and the critical coupling.

Keywords

Green Function Effective Potential Order Phase Transition Cluster Expansion Critical Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Chang: Phys. Rev. D12 (1975) 1071; Phys. Rev. D13 (1976) 2778ADSGoogle Scholar
  2. 2.
    M. Funke, U. Kaulfuss, H. Kümmel: Phys. Rev. D35 (1987) 621ADSGoogle Scholar
  3. 3.
    A. Harindranath, J.P. Vary: Phys. Rev. D36 (1987) 1141; Phys. Rev. D37 (1988) 1076ADSGoogle Scholar
  4. 4.
    L. Polley, U. Ritschel: Phys. Lett. B221 (1989) 44ADSCrossRefGoogle Scholar
  5. 5.
    M.H. Thoma: Z. Phys. C44 (1989) 343Google Scholar
  6. 6.
    P.M. Stevenson: Phys. Rev. D32 (1985) 1389ADSGoogle Scholar
  7. 7.
    I. Stancu, P.M. Stevenson: Phys. Rev. D42 (1990) 2710; I. Stancu: Phys. Rev. D43 (1991) 1283ADSGoogle Scholar
  8. 8.
    P. Cea: Phys. Lett. B236 (1990) 191; P. Cea, L. Tedesco: Phys. Lett. B335 (1994) 423ADSCrossRefGoogle Scholar
  9. 9.
    S.F. Magruder: Phys. Rev. D14 (1976) 1602; S.J. Chang, S.F. Magruder: Phys. Rev. D16 (1977) 983ADSGoogle Scholar
  10. 10.
    B. Freedman, P. Smolensky, D. Weingarten: Phys. Lett. B113 (1982) 481ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    P.M. Stevenson: Z. Phys. C24 (1984) 87ADSMathSciNetGoogle Scholar
  12. 12.
    M. Consoli, P.M. Stevenson: Z. Phys. C63 (1994) 427; DE-FG05-92ER-40717-5, hep-ph/9303256; DE-FG05-92ER-40717-13, hep-ph/9403299; DE-FG05-92ER-40717-14, hep-ph/9407334ADSGoogle Scholar
  13. 13.
    K. Huang, E. Manousakis, J. Polongi: Phys. Rev. D35 (1987) 3187ADSGoogle Scholar
  14. 14.
    J.M. Häuser, W. Cassing, A. Peter, M.H. Thoma: Z. Phys. A 353 (1995) 301ADSGoogle Scholar
  15. 15.
    B. Simon, R.G. Griffith: Commun. Math. Phys. 33 (1973) 145, B. Simon: TheP(Φ)2 euclidean (quantum) field theory: Princeton University Press 1974ADSCrossRefGoogle Scholar
  16. 16.
    T. Akiba: Prog. Theor. Phys. 61 (1979) 633ADSCrossRefGoogle Scholar
  17. 17.
    N.N. Bogoliubov, O. Parasiuk: Acta Math. 97 (1957) 227; K. Hepp: Comm. Math. Phys. 2 (1966) 301; W. Zimmermann: Comm. Math. Phys. 11 (1968) 1; Comm. Math. Phys. 15 (1969) 208CrossRefMathSciNetGoogle Scholar
  18. 18.
    J. Collins: Renormalization, Cambridge: Cambridge monographs on mathematical physics 1984; T.-P. Cheng, L.-F. Li: Gauge theory of elementary particle physics, Oxford: Clarendon Press 1991CrossRefMATHGoogle Scholar
  19. 19.
    S.J. Wang, W. Cassing, J.M. Häuser, A. Peter, M.H. Thoma: Ann. Phys 242 (1995) 235ADSCrossRefMATHGoogle Scholar
  20. 20.
    A.L. Fetter, J.D. Walecka: Quantum theory of many-particle systems, New York: McGraw-Hill 1971Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. Peter
    • 1
  • J. M. Häuser
    • 1
  • M. H. Thoma
    • 1
  • W. Cassing
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GiessenGiessenGermany

Personalised recommendations