Advertisement

Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II

  • W. de Boer
  • G. Burkart
  • R. Ehret
  • J. Lautenbacher
  • W. Oberschulte-Beckmann
  • U. Schwickerath
  • V. Bednyakov
  • D. I. Kazakov
  • S. G. Kovalenko
Article
  • 52 Downloads

Abstract

Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ 0 boson mass to the top quark mass. From ax 2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex 2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tom b from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark into and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10).

For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space.

Keywords

Yukawa Coupling Electroweak Symmetry Breaking Higgs Potential Gluino Mass Trilinear Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Fayet, Phys. Lett.B64 (1976) 159; ibid.B60 (1977) 489; S. Dimopoulos, H. Georgi, Nucl. Phys.B193 (1981) 150; L. E. Ibáñez, G. G. Ross, Phys. Lett.B105 (1981) 435; S. Dimopoulos, S. Raby, F. Wilczek, Phys. Rev.D24 (1981) 1681; N. Sakai, Z. Phys.C11 (1981) 153; A. H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett.49 (1982) 970.ADSCrossRefGoogle Scholar
  2. 2.
    J. Ellis, S. Kelley, and D. V. Nanopoulos, Nucl. Phys.B373 (1992) 55.ADSCrossRefGoogle Scholar
  3. 3.
    U. Amaldi, W. de Boer, and H. Fürstenau, Phys. Lett.B260 (1991) 447.ADSCrossRefGoogle Scholar
  4. 4.
    P. Langacker and M. Luo, Phys. Rev.D44 (1991) 817.ADSGoogle Scholar
  5. 5.
    For references see the review papers: H.-P. Nilles, Phys. Rep.110 (1984) 1; H.E. Haber, G.L. Kane, Phys. Rep.117 (1985) 75; A.B. Lahanas and D.V. Nanopoulos, Phys. Rep.145 (1987) 1; R. Barbieri, Riv. Nuo. Cim.11 (1988) 1. W. de Boer, Prog. in Nucl. and Part. Phys.33 (1994) 447.ADSCrossRefGoogle Scholar
  6. 6.
    G. G. Ross and R. G. Roberts, Nucl. Phys.B377 (1992) 571.ADSCrossRefGoogle Scholar
  7. 7.
    M. Carena, S. Pokorski, and C. E. M. Wagner, Nucl. Phys.B406 (1993) 59.ADSCrossRefGoogle Scholar
  8. 8.
    V. Barger, M. S. Berger, and P. Ohmann, Phys. Rev.D47 (1993) 1093.ADSGoogle Scholar
  9. 9.
    M. Olechowsi and S. Pokorski, Nucl. Phys.B404 (1993) 590.ADSCrossRefGoogle Scholar
  10. 10.
    P.H. Chankowski et al., IFT-95-9, MPI-PTH-95-58 and ref. therein.Google Scholar
  11. 11.
    P. Langacker and N. Polonsky, Phys. Rev.D49 (1994) 1454; UPR-0642-T and ref. therein.ADSGoogle Scholar
  12. 12.
    J. L. Lopez, D.V. Nanopoulos, and A. Zichichi, Progr. in Nucl. and Particle Phys.,33 (1994) 303 and ref. therein.ADSCrossRefGoogle Scholar
  13. 13.
    W. de Boer, Progr. in Nucl. and Particle Phys.,33 (1994) 201.ADSCrossRefGoogle Scholar
  14. 14.
    W. de Boer, R. Ehret, and D. Kazakov, Phys. Lett.B334 (1994) 220.ADSCrossRefGoogle Scholar
  15. 15.
    J. L. Lopez, D.V. Nanopoulos, A. Zichichi, CTP-TAMU-40-93 (1993); CTP-TAMU-33-93 (1993); CERN-TH-6934-93 (1993); CERN-TH-6926-93-REV (1993); CERN-TH-6903-93 (1993); J. L. Lopez et al., Phys. Lett.B306 (1993) 73.Google Scholar
  16. 16.
    S.P. Martin and P. Ramond, Phys. Rev.D48 (1993) 5365 D.J. Castano, E.J. Piard, and P. Ramond, Phys. Rev.D49 (1994) 4882.ADSGoogle Scholar
  17. 17.
    G. L. Kane, C. Kolda, L. Roszkowski, and J. D. Wells, Phys. Rev.D49 (1994) 6173.ADSGoogle Scholar
  18. 18.
    C. Kolda, L. Roszkowski, and J. D. Wells and G. L. Kane, Phys. Rev.D50 (1994) 3498.ADSGoogle Scholar
  19. 19.
    M. Carena and C. E. M. Wagner, CERN-TH-7393-94 and ref. therein.Google Scholar
  20. 20.
    M. Carena, M. Olechowski, S. Pokorski, and C. E. M. Wagner, Nucl. Phys.419 (1994) 213.ADSCrossRefGoogle Scholar
  21. 21.
    R. Ammar et al. CLEO-Collaboration, Phys. Rev. Lett.74 (1995) 2885.ADSCrossRefGoogle Scholar
  22. 22.
    R. Arnowitt and P. Nath, Phys. Rev. Lett.69 (1992) 725; Phys. Lett.B287 (1992) 89; Phys. Lett.B289 (1992) 368; Phys. Lett.B299 (1993) 58, ERRATUM-ibid.B307 (1993) 403; Phys. Rev. Lett.70 (1993) 3696; CTP-TAMU-23/93 (1993). and references therein.ADSCrossRefGoogle Scholar
  23. 23.
    P. Langacker, Univ. of Penn. Preprint, UPR-0539-T (1992).Google Scholar
  24. 24.
    D.V. Nanopoulos J. Ellis, J.L. Lopez, Phys. Lett.B252 (1990) 53.ADSMathSciNetGoogle Scholar
  25. 25.
    D.I. Kazakov et al., Contr. paper to the EPS Conf., Brussels, (1995).Google Scholar
  26. 26.
    L. Girardello and M.T. Grisaru, Nucl. Phys.B194 (1984) 419.Google Scholar
  27. 27.
    R. Arnowitt and P. Nath, Phys. Rev.D46 (1992) 3981.ADSGoogle Scholar
  28. 28.
    J. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett.B257 (1991) 83; Phys. Lett.B262 (1991) 477.ADSCrossRefGoogle Scholar
  29. 29.
    P. H. Chankowski, S. Pokorski, and J. Rosiek, Nucl. Phys.B423 (1994)437; MPI-PH-92-116 (1992); MPI-PH-92-116-ERR (1992).ADSCrossRefGoogle Scholar
  30. 30.
    A.V. Gladyshev et al., Preprint Univ. of Karlsruhe, IEKP-KA/96-03, hep-ph/9603346 and references therein.Google Scholar
  31. 31.
    A. Brignole, J. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett.B271 (1991) 123.ADSCrossRefGoogle Scholar
  32. 32.
    Z. Kunszt and F. Zwirner, Nucl. Phys.B 385 (1992) 3.ADSCrossRefGoogle Scholar
  33. 33.
    J. R. Espinosa, M. Quirós, and F. Zwirner, Phys. Lett.B307 (1993) 106.ADSCrossRefGoogle Scholar
  34. 34.
    U. Amaldi, W. de Boer, P. H. Frampton, H. Fürstenau, and J.T. Liu, Phys. Lett.B281 (1992) 374.ADSCrossRefGoogle Scholar
  35. 35.
    H. Murayama and T. Yanagida, Mod. Phys. Lett.A7 (1992) 147; T. G. Rizzo, Phys. Rev.D45 (1992) 3903; T. Moroi, H. Murayama and T. Yanagida, Phys. Rev.D48 (1993) 2995.ADSCrossRefGoogle Scholar
  36. 36.
    G. ’t Hooft, Nucl. Phys.B61, (1973) 455; W. A. Bardeen, A. Buras, D. Duke and T. Muta, Phys. Rev.D 18, (1978) 3998.ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    The LEP Collaborations: ALEPH, DELPHI, L3 and OPAL and the LEP electroweak Working Group; Phys. Lett.276B (1992) 247;. Updates are given in CERN/PPE/93-157, CERN/PPE/94-187 and LEPEWWG/95-01 (see also ALEPH 95-038, DELPHI 95-37, L3 Note 1736 and OPAL TN284.Google Scholar
  38. 38.
    Review of Particle Properties. Phys. Rev.D50 (1994).Google Scholar
  39. 39.
    CDF Collab., F. Abe et al., Phys. Rev. Lett.74 (1995) 2626.ADSCrossRefGoogle Scholar
  40. 40.
    D0 Collab., S. Abachi et al., Phys. Rev. Lett.74 (1995) 2632.ADSCrossRefGoogle Scholar
  41. 41.
    G. Degrassi, S. Fanchiotti, and A. Sirlin, Nucl. Phys.B351 (1991) 49.ADSCrossRefGoogle Scholar
  42. 42.
    S. Eidelman and F. Jegerlehner, Z.Phys.C67 (1995) 585.ADSGoogle Scholar
  43. 43.
    I. Antoniadis, C. Kounnas, and K. Tamvakis, Phys. Lett.119B (1982) 377.ADSCrossRefGoogle Scholar
  44. 44.
    B. Pendleton and G.G. Ross, Phys. Lett.B98 (1981) 291;.ADSCrossRefGoogle Scholar
  45. 45.
    V. Barger, M. S. Berger, P. Ohmann, and R. J. N. Phillips, Phys. Lett.B314 (1993) 351.ADSCrossRefGoogle Scholar
  46. 46.
    P. Langacker and N. Polonski, Univ. of Pennsylvania Preprint UPR-0556-T, (1993).Google Scholar
  47. 47.
    S. Kelley, J. L. Lopez, and D.V. Nanopoulos, Phys. Lett.B274 (1992) 387.ADSCrossRefGoogle Scholar
  48. 48.
    M. Carena, M. Olechowski, S. Pokorski, and C. E. M. Wagner, Nucl. Phys.B426 (1994) 269.ADSCrossRefGoogle Scholar
  49. 49.
    H. Arason et al., Phys. Rev. Lett.67 (1991) 2933.ADSCrossRefGoogle Scholar
  50. 50.
    J. Gasser and H. Leutwyler, Phys. Rep.87C (1982) 77; S. Narison, Phys. Lett.B216 (1989) 191; N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Z. Phys.C48 (1990) 673.ADSCrossRefGoogle Scholar
  51. 51.
    R. Hempfling, Phys. Rev.D49 (1994) 6168.ADSGoogle Scholar
  52. 52.
    U. Sarid L. Hall, R. Rattazzi, LBL-33997, UCB-PTH-93/14, Phys. Rev.D50(1994)7048.ADSGoogle Scholar
  53. 53.
    C.T.H. Davies et al., Phys. Rev.D50 (1994) 6963.ADSGoogle Scholar
  54. 54.
    H. Marsiske, SLAC-PUB-5977 (1992).Google Scholar
  55. 55.
    K.G. Chetyrkin and A. Kwiatkowski, Phys. Lett.B305 (1993) 285.ADSCrossRefGoogle Scholar
  56. 56.
    F. Borzumati, Z. Phys.C63 (1995) 291.ADSGoogle Scholar
  57. 57.
    S. Bertolini, F. Borzumati, A. Masiero, and G. Ridolfi, Nucl. Phys.B353 (1991) 591 and references therein; N. Oshimo, Nucl. Phys.B404 (1993) 20.ADSCrossRefGoogle Scholar
  58. 58.
    A.J. Buras et al., Nucl. Phys.B424(1994)374.ADSCrossRefGoogle Scholar
  59. 59.
    R. Barbieri and G. Giudice, Phys. Lett.B309 (1993) 86; R. Garisto and J.N. Ng, Phys. Lett.B315 (1993) 372.ADSCrossRefGoogle Scholar
  60. 60.
    A. Ali and C. Greub, Z. Phys.C60 (1993) 433.ADSGoogle Scholar
  61. 61.
    F.M. Borzumati, M. Olechowski and S. Pokorski, Phys. Lett.B349 (1995) 311.ADSCrossRefGoogle Scholar
  62. 62.
    J. L. Lopez, D.V. Nanopoulos, G. T. Park, Phys. Rev.D48 (1993) 974; J.L. Lopez et al., Phys. Rev.D51 (1995) 147.ADSGoogle Scholar
  63. 63.
    J.L. Hewett, Phys. Rev. Lett.70 (1993) 1045; V. Barger, M.S. Berger, and R.J.N. Phillips, Phys. Rev. Lett.70 (1993) 1368; M.A. Diaz, Phys. Lett.B304 (1993) 278.ADSCrossRefGoogle Scholar
  64. 64.
    D. Buskulic et al., ALEPH Coll., Phys. Lett.B313 (1993) 312.ADSCrossRefGoogle Scholar
  65. 65.
    A. Sopczak, CERN-PPE/94-73,Lisbon Fall School 1993.Google Scholar
  66. 66.
    The LEP Coll., unpublished results.Google Scholar
  67. 67.
    G. Börner, The early Universe,. Springer Verlag, (1991).Google Scholar
  68. 68.
    E.W. Kolb and M.S. Turner, The early Universe,. Addison-Wesley, (1990).Google Scholar
  69. 69.
    G. Steigman, K.A. Olive, D.N. Schramm, M.S. Turner, Phys. Lett.B176 (1986) 33; J. Ellis, K. Enquist, D.V. Nanopoulos, S. Sarkar, Phys. Lett.B167 (1986) 457; G. Gelmini and P. Gondolo, Nucl. Phys.360 (1991) 145.ADSCrossRefGoogle Scholar
  70. 70.
    M. Drees and M. M. Nojiri, Phys. Rev.D47 (1993) 376; J. L. Lopez, D.V. Nanopoulos, and H. Pois, Phys. Rev.D47 (1993) 2468; P. Nath and R. Arnowitt, Phys. Rev. Lett.70 (1993) 3696; J. L. Lopez, D.V. Nanopoulos, and K. Yuan, Phys. Rev.D48 (1993) 2766.ADSGoogle Scholar
  71. 71.
    L. Roszkowski, Univ. of Michigan Preprint, UM-TH-93-06; UM-TH-94-02.Google Scholar
  72. 72.
    M. Drees and M. M. Nojiri, Phys. Rev.D45 (1992) 2482.ADSGoogle Scholar
  73. 73.
    J. Ellis et al., Nucl. Phys.B238 (1984) 453.ADSCrossRefGoogle Scholar
  74. 74.
    M. Carena and C.E.M. Wagner, CERN-TH.7321/94 (1949).Google Scholar
  75. 75.
    M. Olechowski and S. Pokorski, Phys. Lett.B344 (1995) 201.ADSCrossRefGoogle Scholar
  76. 76.
    R. Rattazzi, U. Sarid, and L.J. Hall, hep-ph/9405313.Google Scholar
  77. 77.
    R. Rattazzi and U. Sarid, Phys. Rev.D53 (1996) 1553.ADSGoogle Scholar
  78. 78.
    N. Polonsky and A. Pomarol, Phys. Rev.D51 (1995) 6532.ADSGoogle Scholar
  79. 79.
    S. Katsanevas, SUSYGEN, private communication.Google Scholar
  80. 80.
    Baer et al., Int. Journ. of mod. phys.Vol.4,16(1989)4111.ADSCrossRefGoogle Scholar
  81. 81.
    F.E Paige and S.D. Protopopescu, ISAJET7.11,Fermilab.Google Scholar
  82. 82.
    P. Chankowski, S. Pokorski and J. Rosiek, Phys. Lett.B281 (1992) 100; M.Carena, J.R.Espinosa, M.Quiros and C.E.M.Wagner, CERN Preprint CERN-TH/95-45; M.Carena, M.Quiros and C.E.M.Wagner, CERN Preprint CERN-TH/95-157; see too: R. Hempfling and A. Hoang, Phys. Lett.B331 (1994) 99; H.Haber, R. Hempfling and A. Hoang, to be published.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • W. de Boer
    • 1
  • G. Burkart
    • 1
  • R. Ehret
    • 1
  • J. Lautenbacher
    • 1
  • W. Oberschulte-Beckmann
    • 1
  • U. Schwickerath
    • 1
  • V. Bednyakov
    • 2
  • D. I. Kazakov
    • 2
  • S. G. Kovalenko
    • 2
  1. 1.Institut für Experimentelle KernphysikUniversität KarlsruheKarlsruheGermany
  2. 2.Bogoliubov Lab. of Theor. PhysicsJoint Inst. for Nucl. ResearchDubna, Moscow RegionRussia

Personalised recommendations