Advertisement

Geometric formulation of classical mechanics and field theory

  • V. Aldaya
  • J. A. de Azcárraga
Article

References

  1. [1]
    E. Cartan:Leçons sur les invariants intégraux (Paris, 1922).Google Scholar
  2. [2]
    Ŕ. Abraham andJ. E. Marsden:Foundations of Mechanics (New York, N. Y., 1967); II edition (New York, N. Y., 1978). The second edition may be considered as a new book and contains an extensive bibliography.Google Scholar
  3. [2]a
    W. Thirring:Classical Dynamical Systems (New York, N. Y., and Wien, 1978).Google Scholar
  4. [2]b
    C. C. Wang:Mathematical Principles of Mechanics and Electromagnetism (Part A) (New York, N. Y., and London, 1979).Google Scholar
  5. [3]
    In this context see, for instance,R. Hermann: inTopics in Quantum Field Theory, edited byJ. A. de Azcárraga (New York, N. Y., 1978);C. N. Yang:Ann. N. Y. Acad. Sci.,294, 86 (1977), and references therein.Google Scholar
  6. [4]
    P. Dedecker:Calcul des variations, formes différentielles et champs géodésiques, inColloque Internationale de Géometrie Différentielle, Strasbourg, 1953 (Paris, 1954);Calculs des variations et topologie algébrique, inMémories de la Societé Royale des Sciences de Liége, 4ème série, XIX, fasc. I. See alsoOn the Generalization of Symplectic Geometry to Multiple Integrals in the Calculus of Variations, inLecture Notes in Mathematics,570 (1977), p. 395.Google Scholar
  7. [5]
    A. Trautman:Commun. Math. Phys.,6, 248 (1967).MathSciNetADSCrossRefMATHGoogle Scholar
  8. [6]
    P. L. García:Collect. Math.,19, 73, 155 (1968).MathSciNetMATHGoogle Scholar
  9. [7]
    R. Hermann:Vector Bundles in Mathematical Physics, Vol.1 (New York, N. Y., 1970);Geometry, Physics and Systems (New York, N. Y., 1973).Google Scholar
  10. [7]a
    Y. Choquet-Bruhat, C. De Witt-Morette andM. Dillard-Bleick:Analysis, Manifolds and Physics (Amsterdam, 1978).Google Scholar
  11. [8]
    J. Śniatycki:Proc. Cambridge Philos. Soc.,68, 475 (1970).MathSciNetADSCrossRefMATHGoogle Scholar
  12. [9]
    H. Goldschmidt andS. Sternberg:Ann. Inst. Fourier (Grenoble),23, 203 (1973);H. Goldschmidt: inGéometrie différentielle (1972) Colloque, Santiago de Compostela, inLecture Notes in Mathematics, Vol.392 (Berlin, 1974).MathSciNetCrossRefMATHGoogle Scholar
  13. [10]
    P. L. García:Symp. Math.,14, 219 (1974).Google Scholar
  14. [11]
    P. L. García andA. Pérez-Rendón:Arch. Ration. Mech. Anal.,43, 101 (1971).CrossRefMATHGoogle Scholar
  15. [12]
    D. Krupka:Folia Fac. Sci. Nat. Univ. Purkinianae Brunensis (Physica),14, 1 (1975).Google Scholar
  16. [13]
    D. Krupka:J. Math. Anal. Appl.,49, 180, 469 (1975).MathSciNetCrossRefMATHGoogle Scholar
  17. [14]
    W. Szczyrba:Ann. Pol. Math.,32, 145 (1976).MathSciNetMATHGoogle Scholar
  18. [15]
    J. Kijowski andW. Szczyrba:Commun. Math. Phys.,46, 183 (1976).MathSciNetADSCrossRefMATHGoogle Scholar
  19. [16]
    D. Krupka:Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis,12, 99 (1976).MathSciNetGoogle Scholar
  20. [17]
    P. Rodrigues:J. Math. Phys. (N. Y.),18, 1720 (1977).ADSCrossRefMATHGoogle Scholar
  21. [18]
    V. Aldaya andJ. A. de Azcárraga:J. Math. Phys. (N. Y.),19, 1869 (1978).ADSCrossRefMATHGoogle Scholar
  22. [19]
    C. Godbillon:Géometrie différentielle et mécanique analytique (Paris, 1969).Google Scholar
  23. [20]
    P. Malliavin:Géometrie différentielle intrinseque (Paris, 1972).Google Scholar
  24. [21]
    J. M. Souriau:Structure des systèmes dynamiques (Paris, 1969).Google Scholar
  25. [22]
    V. I. Arnold:Mathematical Methods of Classical Mechanics (Berlin, 1978) (Russian edition, 1974).Google Scholar
  26. [22]a
    S. Mac Lane:Am. Math. Monthly,77, 570 (1970), reprinted inSelected Papers, edited byI. Kaplanski (New York, N. Y., and Heidelberg, 1979).MathSciNetCrossRefGoogle Scholar
  27. [23]
    R. M. Santilli:Foundations of Theoretical Mechanics (I) (New York, N. Y., 1978).Google Scholar
  28. [23]a
    R. Jost:Rev. Mod. Phys.,36, 572 (1964).ADSCrossRefGoogle Scholar
  29. [24]
    E. T. Whittaker:A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge, 1937).Google Scholar
  30. [25]
    W. M. Tulczyjew:Ann. Inst. Henri Poincaré,27, 101 (1977).MathSciNetMATHGoogle Scholar
  31. [26]
    See,e.g.,J. M. Lévy-Leblond: inGroup Theory and its Applications, edited byE. M. Loebl, Vol.2 (New York, N. Y., 1971), and references therein.Google Scholar
  32. [27]
    M. Pauri andG. M. Prosperi:J. Math. Phys. (N. Y.),7, 366 (1966);8, 2256 (1967);9, 1146 (1968).MathSciNetADSCrossRefMATHGoogle Scholar
  33. [28]
    E. C. G. Sudarshan andN. Mukunda:Classical Dynamics: A Modern Perspective (New York, N. Y., 1974).Google Scholar
  34. [29]
    V. Bargmann:Ann. Math.,59, 1 (1954). See alsoM. Hamermesh:Group Theory and its Applications to Physical Problems (New York, N. Y., 1962).MathSciNetCrossRefMATHGoogle Scholar
  35. [30]
    E. P. Wigner:Ann. Math.,40, 149 (1939).MathSciNetCrossRefGoogle Scholar
  36. [31]
    L. D. Landau andE. M. Lifschitz:Mechanics (New York, N. Y., 1960).Google Scholar
  37. [32]
    J. M. Lévy-Leblond:Commun. Math. Phys.,12, 64 (1969).ADSCrossRefMATHGoogle Scholar
  38. [33]
    J. Kijowski:Commun. Math. Phys.,30, 99 (1973).MathSciNetADSCrossRefGoogle Scholar
  39. [34]
    J. Kijowski andW. Szczyrba:Commun. Math. Phys.,46, 183 (1976).MathSciNetADSCrossRefMATHGoogle Scholar
  40. [35]
    J. Eells:Bull. Am. Math. Soc.,72, 751 (1966).MathSciNetCrossRefGoogle Scholar
  41. [36]
    R. S. Palais:Foundations of Global Nonlinear Analysis (New York, N. Y., 1968).Google Scholar
  42. [37]
    S. Lang:Differentiable Manifolds (New York, N. Y., 1972).Google Scholar
  43. [37]a
    Pham Mau Quan:Introduction a la géométrie des variétés différentiables (Paris, 1969).Google Scholar
  44. [38]
    F. Hirzebruch:Topological Methods in Algebraic Geometry (Berlin, 1966).Google Scholar
  45. [39]
    G. Mack andA. Salam:Ann. Phys. (N. Y.),53, 174 (1969);S. Coleman andA. Jackiw:Ann. Phys. (N. Y.),67, 552 (1971),. For the structure of the conformal group see alsoH. A. Kastrup:Phys. Rev.,142, 1060 (1966).MathSciNetADSCrossRefGoogle Scholar
  46. [40]
    D. Husemoller:Fibre Bundles, second edition (New York, N. Y., 1975);N. Steenrod:The Topology of Fibre Bundles (Princeton, N. J., 1951).Google Scholar
  47. [41]
    J. L. Koszul:Lectures on Fibre Bundles and Differential Geometry (Bombay, 1960).Google Scholar
  48. [42]
    G. H. Thomas:Riv. Nuovo Cimento,3, No. 4 (1980).Google Scholar
  49. [43]
    W. Drechsler andM. E. Mayer:Fibre bundle techniques in gauge theories, inLecture Notes in Physics, Vol.67 (Berlin, 1977).Google Scholar
  50. [44]
    A. Trautman:Rep. Math. Phys.,1, 29 (1970).MathSciNetADSCrossRefMATHGoogle Scholar
  51. [45]
    M. C. Ehresmann:C. R. Acad. Sci. Paris,233, 598, 777, 1081 (1951).MathSciNetMATHGoogle Scholar
  52. [46]
    J. F. Pommaret:Systems of Partial Differential Equations and Lie Pseudogroups (New York, N. Y., and Paris, 1978).Google Scholar
  53. [47]
    J. C. Tougeron:Idéaux des fonctions différentiables, inErgebnisse der Mathematik, Vol.71 (Berlin, 1972).Google Scholar
  54. [48]
    R. N. Sen:Bundle representations and their applications, Ben Gurion University preprint (1980).Google Scholar

Copyright information

© Societàa Italiana di Fisica 1980

Authors and Affiliations

  • V. Aldaya
    • 1
  • J. A. de Azcárraga
    • 1
  1. 1.Departamento de Física TeóricaFacultad de Ciencias FísicasBurjasot (Valencia)Spain

Personalised recommendations