Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain

  • Ibàñez Carles 
  • Canicio Antoni 
  • Day John W. 
  • Curcó Antoni 


The Ebre (Ebro) Delta is one of the most important wetland areas in the western Mediterranean. Ca. 40 % of the delta plain is less than 0.5 m above mean sea level and part of the southern margin of the delta is at mean sea level in an area protected by dikes. Both mean rates of secular subsidence in the Ebre Delta and eustatic sea level rise are ca. 1 – 2 mm/yr. Thus, the present annual relative sea level rise (RSLR) rate in the Ebre Delta may be at least 3 mm/yr. Measured accretion rates in the delta range from 4 mm/yr in the wetlands surrounding the river mouth to <0.1 mm/yr in impounded salt marshes and rice fields. The annual sediment deficit in the delta plain to offset RSLR is close to 1 million m3/yr. Accretion rates in the rice fields prior to the construction of large dams in the Ebre watershed were higher than RSLR rates, from 3 – 15 mm/yr. At present, >99 % of the riverine sediments are retained in the reservoirs and rice fields are losing ca. 0.2 mm/yr.

Future management plans should take RSLR into account and include control of freshwater and sediment flows from the river in order to offset negative effects from waterlogging and salt intrusion, and maintain land elevation. This will include the partial removal of sediments trapped behind the Ribarroja and Mequinença dams. Stocks and inputs of sediments in the corresponding reservoirs are large enough for land elevation of ca. 50 cm in the whole delta plain.

Advantages of this solution include (1) new sediments to the delta to offset subsidence (via rice fields) and coastal retreat, (2) enhanced functioning of the delta (productivity and nutrient processing), (3) avoidance of accumulation of sediments in the reservoirs. Hence, it is important to manage river discharges at the dams from an integrated viewpoint, whereas currently only hydropower and agricultural requirements are considered. It is also crucial to maintain periods of high discharge, to have enough river energy to transport as much sediments as possible.


Deltas Sea level rise Sedimentation Subsidence Sustainability Water management 



Relative sea level rise


Sediment erosion table


  1. Anon. 1988.Plan Hidrológico. Documentación Básica. Confederación Hidrográfica del Ebro. Technical Report, Zaragoza.Google Scholar
  2. Baumann, R.H., Day, J.W. Jr. & Miller, C. 1984. Mississippi. deltaic wetland survival; sedimentation versus coastal submergence.Science 224: 1093–1095.CrossRefGoogle Scholar
  3. Boumans, R.M. & Day, J.W. Jr. 1993. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table.Estuaries 16: 375–380.CrossRefGoogle Scholar
  4. Brivio, P.A. & Zilioli, E. Assessing wetland changes in the Venice lagoon by means of satellite remote sensing data.J. Coastal Conserv. 2: 23–32.Google Scholar
  5. Bruun, P. 1962. Sea level rise as a cause of shore erosion.Proc. Am. Soc. Civil Engin. 88: 130–170.Google Scholar
  6. Cahoon, D. & Turner, R.E. 1989. Accretion and canal impacts in a rapidly subsiding wetland. II. Feldspar marker horizon technique.Estuaries 12: 260–268.CrossRefGoogle Scholar
  7. Cahoon, D., Reed, D. & Day, J. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited.Marine Geology 130: 1–9.CrossRefGoogle Scholar
  8. Canicio, A. & Ibàñez, C. 1994.Estudi del risc de polderització del delta de l’Ebre. Causes i conseqüències de la pujada relativa del nivell mitjà de la mar. Technical Report, Generalitat de Catalunya, Barcelona.Google Scholar
  9. Canicio, A. In press. Origen i evolució de la plana deltaica de l’Ebre. In:El delta de l’Ebre: l’home i el medi. Museu del Montsià, Amposta.Google Scholar
  10. Comín, F., Menéndez, M. & Lucena, J. 1989. Proposals for macrophyte restoration in eutrophic coastal lagoons.Hydrobiologia 200/201: 427–436.CrossRefGoogle Scholar
  11. Conner, W.H. & Day, J.W. Jr. 1989. Response of coastal wetland forests to human and natural changes in the environment with emphasis on hydrology. In: Hook, D.D. & Lea, R. (eds.)Proceedings of the symposium: The forested wetlands of the Southern United States; Orlando, pp. 34–43. FL. Gen. Tech. Rep. SE-50. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.Google Scholar
  12. Conner, W.H. & Day, J.W. Jr. 1991. Variations in vertical accretion in a Louisiana swamp.J. Coastal Res. 7: 617–622.Google Scholar
  13. Day, J.W. & Templet, P.H. 1989. Consequences of sea level rise: Implications from the Mississippi Delta.Coastal Manage. 17: 241–257.CrossRefGoogle Scholar
  14. Gornitz, V. 1995. Sea-level rise: a review of recent past and near-future trends.Earth Surface Landforms 20: 7–20.CrossRefGoogle Scholar
  15. Gornitz, V., Lebedeff, S. & Hansen, J.E. 1982. Global sea level trends in the past century.Science 215: 1611–1614.CrossRefGoogle Scholar
  16. Gorría, H. 1877.Proyecto de desecación de las marismas y terrenos pantanosos denominados de Los Alfaques. Ministerio de Agricultura, Madrid.Google Scholar
  17. Hackney, C.T. & Cleary, W.J. 1987. Saltmarsh loss in southeastern North Carolina lagoons: importance of sea level rise and inlet dredging.J. Coastal Res. 3: 93–97.Google Scholar
  18. Houghton, J., Jenkins, G. & Ephraums, J. (eds.) 1993.Climate Change. The IPCC Scientific Assessment. Working Group 1, Cambridge University Press, Cambridge.Google Scholar
  19. Ibàñez, C., Rodrigues-Capítulo, A. & Prat, N. 1995. The combined impacts of river regulation and eutrophication on the dynamics of the salt wedge and the ecology of the lower Ebro River. In: Harper, D. & Ferguson, A. (eds.)The ecological basis for river management, pp. 105–114. John Wiley & Sons, Chichester.Google Scholar
  20. Ibàñez, C., Prat, N. & Canicio, A. 1996a. Changes in the hydrology and sediment transport produced by large dams on the lower Ebro river and its estuary.Regulated Rivers 12: 51–62.CrossRefGoogle Scholar
  21. Ibañez, C., Canicio, A., Curcó, A., Day, J.W. & Prat, N. 1996b.Evaluation of vertical accretion and subsidence rates. MEDDELT Final Report, Ebre Delta Plain Working Group. Department of Ecology, University of Barcelona, Barcelona.Google Scholar
  22. Jeftic, L., Milliman, J. & Sestini, G. (eds.) 1992.Climatic Change and the Mediterranean. Edward Arnold, London.Google Scholar
  23. Jiménez, J.A. & Sánchez-Arcilla, A. 1993. Medium-term coastal response at the Ebro delta, Spain.Mar. Geol. 114: 105–118.CrossRefGoogle Scholar
  24. l’Homer, A. 1992. Sea-level changes and impacts on the Rhone coastal lowlands. In: Tooley, A., Jelgersma, M. & Jelgersma, S. (eds.)Impacts of sea-level rise on European coastal lowlands, pp. 136–152. Blackwell Publishers, Oxford.Google Scholar
  25. l’Homer, A., Bazile, F., Thommeret, J. & Thommeret, Y. 1981. Principales étapes de l’édification du delta du Rhone de 7000 BP à nos jours, variations du niveau marin.Oceanis 7: 389–408.Google Scholar
  26. Maldonado, A. 1972.El delta del Ebro, Estudio sedimentológico y estratigráfico. Ph.D. Thesis, Univ. of Barcelona.Google Scholar
  27. Muñoz, I. 1990.Limnologia de la part baixa del riu Ebre i els canals de reg. Ph. D. Thesis, University of Barcelona.Google Scholar
  28. Muñoz, I. & Prat, N. 1989. Effects of river regulation on the lower Ebro river.Regulated Rivers 3: 345–354.CrossRefGoogle Scholar
  29. Riera, G. 1991.Evolució recent de la desembocadura de l’Ebre a partir de l’anàlisi batimorfològica. Master Thesis, University of Barcelona.Google Scholar
  30. Salinas, L.M., DeLaune, R.D. & Patrick, W.H. Jr. 1986. Changes occurring along a rapidly submerging coastal area: Louisiana, USA.J. Coastal Res. 2: 269–284.Google Scholar
  31. Sestini, G. 1992a. Implications of climatic changes for the Po delta and Venice lagoon. In: Jeftic, L., Milliman, J. & Sestini, G. (eds.) pp. 428–494.Climatic Change and the Mediterranean. Edward Arnold, London.Google Scholar
  32. Sestini, G. 1992b. Implications of climatic changes for the Nile delta. In: Jeftic, L., Milliman, J. & Sestini, G. (eds.) pp. 535–601.Climatic Change and the Mediterranean. Edward Arnold, London.Google Scholar
  33. Stanley, D. 1988. Subsidence in the northeastern Nile delta: rapid rates, possible causes, and consequences.Science 240: 497–500.CrossRefGoogle Scholar
  34. Stanley, D. 1990. Recent subsidence and northeast tilting of the Nile delta: Egypt.Mar. Geol. 94: 147–154.CrossRefGoogle Scholar
  35. Stevenson, J.C., Ward, L. & Kearney, M. 1988. Sediment transport and trapping in marsh systems: implications of tidal flux studies.Mar. Geol. 80: 37–59.CrossRefGoogle Scholar
  36. Suhayda, J.N. et al. 1991.Feasibility of using pipelines and dredged sediments to restore wetlands in Terrebonne Parish, Louisiana. Woodward-Clyde Consultants, Baton Rouge, LA.Google Scholar
  37. Tooley, M. & Jelgersma, S. 1992.Impacts of sea-level rise on European coastal wetlands. Blackwell, Oxford.Google Scholar
  38. Varela, J.M., Gallardo, A. et al. 1986. Retención de sólidos por los embalses de Mequinenza y Ribarroja. Efectos sobre los aportes al Delta del Ebro. In: Mariño, M. (ed.)El Sistema Integrado del Ebro, pp. 203–219. Gráficas Hermes, Madrid.Google Scholar
  39. Wasp, E.J., Kenny, J.P. & Gandhi, R.L. 1977.Solid-liquid flow slurry pipeline transportation. Trans. Tech. Publications, Clausthal.Google Scholar

Copyright information

© EUCC 1997

Authors and Affiliations

  • Ibàñez Carles 
    • 1
  • Canicio Antoni 
    • 2
  • Day John W. 
    • 3
  • Curcó Antoni 
    • 4
  1. 1.Departament d’Ecologia, Facultat de BiologiaUniversitat de BarcelonaBarcelona, CataloniaSpain
  2. 2.Consultant GeologistDeltebre, CataloniaSpain
  3. 3.Department of Oceanography and Coastal SciencesLouisiana State UniversityBaton RougeUSA
  4. 4.Departament de Botànica, Facultat de BiologiaUniversitat de BarcelonaBarcelona, CataloniaSpain

Personalised recommendations