Advertisement

Rendiconti Lincei

, Volume 17, Issue 4, pp 377–392 | Cite as

Epistemological and moral lessons from the history of neurodegenerative diseases

  • Gilberto Corbellini
  • Chiara Preti
Article
  • 53 Downloads

Abstract

The problem of the evolutionary causes of neurodegenerative disease is something new in the physiopathology and gerontology panoramas. Nevertheless several approaches are beginning to take it into account. The increased frequency of several diseases related to advanced age is explained in terms of absence of selective pressure in the evolutionary adaptation environment on genetically determined traits that appear after the reproductive age; or by postulating that it is a consequence of antagonistic pleitropism or else a trade-off. The study of age-related diseases and of neurodegenerative diseases in particular can afford important heuristic stimuli towards an evolutionary understanding of the complex mechanisms through which such diseases develop. The history of AD is quite representative of the epistemological obstacles that the conceptualization of complex diseases such as the neurodegenerative pathologies had to overcome in order to come near a more pertinent biological explanation. The physiopathological approach tendentially ran the risk of deviating towards mechanistic single-cause explanations, that could not account for intrinsically variable pathological and clinical signs, possibly overlapping other pathological and clinical phenomena. The history of the concept of AD developed as an interaction among biological, clinical and social views, and was the driving force behind the reconceptualization of dementia. In the light of the complex etiopathogenetic framework emerging from the basic research and from an evolutionary-oriented outlook, also for therapeutic and preventive strategies comprehensive approaches are envisaged that need to be evaluated in the context of our evolutionary constraints. Waiting for therapeutic stem cells and anti-amyloid vaccines, the most emphasized opportunity is related to the possibility of applying the tools of predictive medicine to neurodegenerative diseases. A number of epistemological misunderstandings mark the training of geneticists, medical practitioners and public health experts, who learn the genetic explanation as being founded on a form of genetic determinism If instead the genetic explanation is accepted in its evolutionary dimension this approach implies a decidedly more complete conception of man. A genetic-evolutionary approach to disease proves to be more compatible with prevention strategies through social and cultural intervention than traditional medical-scientific philosophy which focuses mainly on treatments addressing the proximate etiological and pathogenetic mechanisms.

Key words

Evolutionary medicine Ahistorical fallacy Genetic counselling Scientific communication 

Aspetti epistemologici ed etici della storia delle malattie neurodegenerative

Riassunto

Il problema delle cause evolutive delle malattie neurodegenerative è qualcosa di nuovo all’interno del panorama della gerontologia e della fisiopatologia. Nondimeno diversi approcci iniziano ad emergere e l’aumentata frequenza di diverse malattie collegate all’età avanzata viene spiegata in termini di assenza di pressioni selettive nell’ambiente dell’adattamento evolutivo su tratti geneticamente determinati, che si manifestano dopo l’età riproduttiva; o assumendo che sia la conseguenza del pleiotropismo antagonista o anche di untrade-off. Lo studio delle malattie correlate all’età e delle malattie neurodegenerative in particolare può offrire importanti stimoli euristici in vista di una spiegazione evoluzionistica dei meccanismi complessi attraverso cui si sviluppa la malattia. La storia della malattia di Alzheimer (AD) è abbastanza rappresentativa degli ostacoli epistemologici che la concettualizzazione di malattie complesse come le patologie neurodegenerative ha dovuto superare per avvicinarsi a una spiegazione biologica più pertinente. L’approccio fisiopatologico tende verso spiegazioni meccanicistiche e monocausali che non danno conto dei segni clinici e patologici intrinsecamente variabili. La storia del concetto di AD si è sviluppata attraverso l’interazione tra concezioni biologiche, cliniche e sociali, portando a una riconcettualizzazione delle demenze. Alla luce di un sistema di riferimento etiopatogenetico complesso quale quello che emerge dalla ricerca di base e da uno sguardo orientato in senso evoluzionistico, anche per le strategie terapeutiche e preventive si prefigurano approcci più comprensivi che implicano una valutazione dei vincoli di carattere evolutivo che operano sulla biologia umana. Aspettando le cellule staminali terapeutiche e i vaccino antiamiloide, l’opportunità su cui al momento si concentrano le attese riguarda la possibilità di applicare gli strumenti della medicina predittiva alle malattie neurodegenerative. Una serie di fraintendimenti caratterizza la formazione di genetisti, medici ed esperti di sanità pubblica che apprendono la spiegazione genetica delle malattie attraverso la genetica formale e nella prospettiva del determinismo genetico. Se invece l’approccio genetico viene inquadrato nelle sue dimensioni evoluzionistiche esso conduce a una concezione più completa dell’uomo. L’approccio genetico evolutivo alla malattia si dimostra più compatibile con strategie di prevenzione mediate dall’intervento sociale e culturale rispetto alla tradizionale filosofia medico-scientifica focalizzata principalmente sui trattamenti a livello dei meccanismi eziologici e patogenetici immediati.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen N., 1994.Changing Concepts of Schizophrenia and the Ahistorical Fallacy. Am. J. Psychiatry, 151: 1405–407.Google Scholar
  2. Baum A., Friedman A.L., Zakowski S.G., 1997.Stress and genetic testing for disease risk. Health Psychol., 16: 8–19.CrossRefGoogle Scholar
  3. Berrios G.E., 1987.Alzheimer’s Disease: A Conceptual History. J. Geriat. Psychiatr., 5: 335–365.Google Scholar
  4. Carrell R.W., Lomas D.A., 1997.Conformational disease. Lancet, 350: 134–138.CrossRefGoogle Scholar
  5. Changeux J.-P., 1997.Variation and selection in neural function. Trends Neurosci., 20: 291–293.CrossRefGoogle Scholar
  6. Childs B., 1999.Genetic Medicine. A Logic of Disease. The Johns Hopkins University Press, Baltimore.Google Scholar
  7. Condit C., 2001.What is ‘public opinion’ about genetics? Nat. Rev. Genet., 2: 811–815.CrossRefGoogle Scholar
  8. Crews D.E., 2003.Human Senescence. Evolutionary and Biocultural Perspective. Cambridge University Press, Cambridge (UK).Google Scholar
  9. Crowther D.C., 2002.Familial conformational diseases and dementias. Hum. Mut., 20: 1–14.CrossRefGoogle Scholar
  10. Edelman G.M., 1993.Neural Darwinism: selection and re-entrant signalling in higher brain function. Neuron, 10: 115–125.CrossRefGoogle Scholar
  11. Gaskell G.et al., 2000.Biotechnology and the European public. Nat. Biotechnol., 18: 935–938.CrossRefGoogle Scholar
  12. Gerber L., Crews D.E., 1999.Evolutionary Perspectives on Chronic Degenerative Diseases. In:W.E. Trevathan, E.O. Smith, J.J. McKenna (eds.),Evolutionary Medicine. Oxford University Press, New York: 443–469.Google Scholar
  13. Hardy J., Selkoe D.J., 2002.The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science, 297: 353–356.CrossRefGoogle Scholar
  14. Heger M. (ed.), 1999.The Implication of Genetics for Health Professional Education. Josiah Macy, Jr., Foundation, New York.Google Scholar
  15. Helbecque N., Amouyel P., 2004.Commolalities between genetics of cardiovascular disease and neurodegenerative disorders. Curr. Opin Lipidol., 15: 121–127.CrossRefGoogle Scholar
  16. Holtzman N.A., 1999.Promoting Safe and Effective Genetic Tests in the United States: Work of the Task Force on Genetic Testing. Clin. Chem., 45: 732–738.Google Scholar
  17. Holtzman N.A., Shapiro D., 1998.Genetic testing and public policy. Br. Med. J., 316: 852–856.Google Scholar
  18. Holtzman N.A., Watson M.S., 1997.Promoting Safe and Effective Genetic Testing in the United States, Final Report of the Task Force on Genetic Testing. The National Human Genome Research Institute, Washington.Google Scholar
  19. Kennedy J.L., Farrer L.A., Andreasen N.C., Mayeux R., George-Hyslop P. St., 2003.The Genetics of Adult-Onset Neuropsychiatric Disease: Complexities and Conundra. Science, 302: 822–826.CrossRefGoogle Scholar
  20. Kirkwood T.B.L., Martin G.M., Partridge L., 1999.Evolution, senescence and health in old age. In:S.C. Stearns (ed.),Evolution in Health & Disease. Oxford University Press, New York: 219–230.Google Scholar
  21. Kitcher P., 1997.The lives to come. Faber and Faber, New York.Google Scholar
  22. Kraepelin E., 1910.Psychiatrie: Ein Lehrbuch für Studierende und Ärzte. 2 Band, Barth, Leipzig.Google Scholar
  23. Lander E.S., Schork N.J., 1994.Genetic Dissection of Complex Traits. Science, 265: 2037–2048.CrossRefGoogle Scholar
  24. Lerman C., Tercyak K.P., Croyle R.T., Haman H., 2002.Genetic Testing: Psychological Aspects and Implications. J. Consult. Clin. Psychol., 70: 784–797.CrossRefGoogle Scholar
  25. Maddox J., 1999.What Remains to Be Discovered: Mapping the Secrets of the Universe, the Origins of Life, and the Future of the Human Race. Free Press, New York.Google Scholar
  26. Mahowald M.B., Verp M.S., Anderson R.R., 1998.Genetic counseling: clinical and ethical challenges. Annu. Rev. Genet., 32: 547–559.CrossRefGoogle Scholar
  27. Marteau T.M., Croyle R.T., 1998.Psychology responses to genetic testing. Br. Med. J., 316: 693–696.Google Scholar
  28. Marteau T.M., Lerman C., 2000.Genetic risk and behavioural change. Br. Med. J., 322: 1056–1059.CrossRefGoogle Scholar
  29. Marteau T.M., Roberts S., LaRusse S., Green R.C., 2005.Predictive Genetic Testing for Alzheimer’s Disease: Impact upon Risk Perception. Risk Analysis, 25: 397–404.Google Scholar
  30. Maurer K., Volk S., Gerbaldo H., 1997.August D. and Alzheimer’s Disease. Lancet, 349: 1546–1549.CrossRefGoogle Scholar
  31. Monsonego A., Weiner H.L., 2003.Immunotherapeutic Approaches to Alzheimer’s Disease. Science, 302: 834–838.CrossRefGoogle Scholar
  32. National Institute on Aging/Alzheimer’s Association Working Group, 1996.Apolipoprotein E genotyping in Alzheimer’s disease. Lancet, 347: 1091–1347.Google Scholar
  33. National Society of Genetic Counselors, 1997.Predisposition Genetic Testing for Late-Onset Disorders in Adult. JAMA, 278: 1217–1220.CrossRefGoogle Scholar
  34. Newton R.D., 1948.The Identity of Alzheimer’s disease and senile dementia and their relationship in senility. J. Ment. Sci., 94: 225–248.Google Scholar
  35. Nuffield Council on Bioethics, 2002.Genetics and human behaviour: the ethical context. Nuffield Council on Bioethics, London.Google Scholar
  36. Perry E.K., Perry R.H., Blessed G., Tomlinson B.E., 1977.Necropsy Evidence of Central Cholinergic Deficits in Senile Dementia. Lancet, 1: 189.CrossRefGoogle Scholar
  37. Perry E.K., Tomlinson B.E., Blessed G., Bergmann K., Gibson H., Perry R.H., 1978.Correlation of Cholinergic Abnormalities with Senile Plaques and Mental Test Scores in Senile Dementia. Br. Med. J., 2: 1457–1459.CrossRefGoogle Scholar
  38. Perry V.H., 2004.The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav. Immun., 18: 407–413.CrossRefGoogle Scholar
  39. Prusiner S.B., 2001.Shattuck Lecture — neurodegenerative diseases and prions. N. Engl. J. Med., 344: 1518–1526.CrossRefGoogle Scholar
  40. Ross C.A., Poirier M.A., 2004.Protein aggregation and neurodegenerative disease. Nat. Med., 10 Suppl.: S10-S17.CrossRefGoogle Scholar
  41. Rothschild D., 1937.Pathologic Changes in Senile Psychoses and their Psychobiologic Significance. Am. J. Psychiatry, 93: 757–787.Google Scholar
  42. Rothschild D., Kasanin J., 1936.Clinicopathologic Study of Alzheimer’s Disease: A Contribution to its Etiology and Classification. Arch. Neurol. Psychiatry, 36: 293–321.Google Scholar
  43. Sanders C.R., Mayers J.K., 2004.Disease-related misassembly of membrane proteins. Annu. Rev. Biophys. Biomol. Struct., 33: 25–51.CrossRefGoogle Scholar
  44. Sands S.L., Rothschild D., 1952.Sociopsychiatric foundations for a theory of the reactions to aging. J. Nerv. Ment. Dis., 116: 233–241.CrossRefGoogle Scholar
  45. Selkoe D.J., 2003.Folding proteins in fatal ways. Nature, 426: 900–904.CrossRefGoogle Scholar
  46. Solfrizzi V., D’Introno A., Colacicco A.M., Capurso C., Del Parigi A., Capurso S., Gadaleta A., Capurso A., Panza F., 2005.Dietary fatty acids intake: possible role in cognitive decline and dementia. Exp. Gerontol., 40: 257–270.CrossRefGoogle Scholar
  47. Stoppini M., Andreola A., Foresti G., Bellotti V., 2004.Neurodegenerative disease caused by protein aggregation: a phenomenon at the borderline between molecular evolution and ageing. Pharmacol. Res., 50: 419–431.CrossRefGoogle Scholar
  48. Tanzi E.R., Parson A.B., 2000.Decoding Darkness. The Search for the Genetic Causes of Alzheimer’s Disease. Perseus Publishing, Cambridge (Mass.).Google Scholar
  49. Taylor J.P., Hardy J., Fischbeck K.H., 2002.Toxic Proteins in Neurodegenerative Disease. Science, 2002: 1991–1995.CrossRefGoogle Scholar
  50. Terry R.D., 1963.Neurofibrillary Tangles in Alzheimer’s Disease. J. Neuropathol. Exp. Neurol., 22: 629–642.CrossRefGoogle Scholar
  51. Weatherall D.J., 2000.Single gene disorders or complex traits: lessons from the thalassaemias and other monogenic diseases. Br. Med. J., 321: 1117–1120.CrossRefGoogle Scholar
  52. Wick G., Berger P., Jansen-Dürr P., Grubeck-Loebenstein B., 2003.A Darwinian-evolutionary concept of age-related diseases. Exp. Gerontol., 38: 13–25.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Gilberto Corbellini
    • 1
  • Chiara Preti
    • 2
  1. 1.Sezione di Storia della Medicina Dipartimento di Medicina SperimentaleUniversità degli Studi di Roma «La Sapienza»Roma
  2. 2.Dipartimento di FilosofiaUniversità degli Studi della CalabriaArcavacata di Rende (CS)

Personalised recommendations